Skip to main content

Cytokines and Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

Cytokines play a critical role in the development and progression of inflammatory bowel disease. The cytokines are a complex network of proteins that influence the recruitment, differentiation, function, and survival of our immune cells. They are produced by a variety of cells in the intestine and impact the homeostasis of pro-inflammatory and anti-inflammatory responses. These proteins are so crucial to the inflammatory response in IBD that many of our current and future therapies target their control. Here we describe the current understanding of cytokines and their impact on IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neurath MF et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183(6):2605–16.

    Article  CAS  PubMed  Google Scholar 

  2. Reinecker HC et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94(1):174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Camoglio L et al. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis. 1998;4(4):285–90.

    CAS  PubMed  Google Scholar 

  4. Boirivant M et al. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188(10):1929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shetty A, Forbes A. Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn’s disease. Am J Pharmacogenomics. 2002;2(4):215–21.

    Article  CAS  PubMed  Google Scholar 

  6. Strober W et al. Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today. 1997;18(2):61–4.

    Article  CAS  PubMed  Google Scholar 

  7. Neurath MF et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27(7):1743–50.

    Article  CAS  PubMed  Google Scholar 

  8. Murch SH et al. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991;32(8):913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reimund JM et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol. 1996;16(3):144–50.

    Article  CAS  PubMed  Google Scholar 

  10. Targan SR et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35.

    Article  CAS  PubMed  Google Scholar 

  11. Hanauer SB et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Article  CAS  PubMed  Google Scholar 

  12. Colgan SP et al. Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol. 1994;267(2 Pt 1):C402–10.

    CAS  PubMed  Google Scholar 

  13. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    Article  CAS  PubMed  Google Scholar 

  14. Reinisch W et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hommes DW et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seo SU et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cominelli F, Pizarro TT. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10(Suppl 2):49–53; discussion 54.

    Google Scholar 

  18. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut. 1989;30(6):835–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andus T et al. Imbalance of the interleukin 1 system in colonic mucosa – association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut. 1997;41(5):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Assche G et al. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol. 2003;98(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  21. Van Assche G et al. Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut. 2006;55(11):1568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100(5):1134–42.

    Article  CAS  PubMed  Google Scholar 

  23. Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28(3):187–96.

    Article  CAS  PubMed  Google Scholar 

  24. Ito H, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126(4):989–96; discussion 947.

    Google Scholar 

  25. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    Article  CAS  PubMed  Google Scholar 

  26. Fuss IJ et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12(1):9–15.

    Article  PubMed  Google Scholar 

  27. Mannon PJ et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    Article  CAS  PubMed  Google Scholar 

  28. William Sandborn, Christopher Gasink, Marion Blank, Yinghua Lang, Jewel Johanns, Long-Long Gao, Bruce Sands, Stephen Hanauer, Brian Feagan, Stephan Targan, Subrata Ghosh, Wim de Villiers, Jean-Frédéric Colombel, Scott Lee, Pierre Desreumaux, Edward Loftus, Severine Vermeire, Paul Rutgeerts A Multicenter, Double-Blind, Placebo-Controlled Phase3 Study Of Ustekinumab, A Human Il-12/23P40 Mab, In Moderate-Service Crohn’s Disease Refractory To Anti-Tfnα: Uniti- 1. Inflamm Bowel Dis 2016;22 Suppl 1:S1.

    Google Scholar 

  29. Fuss IJ et al. Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology. 1999;117(5):1078–88.

    Article  CAS  PubMed  Google Scholar 

  30. Harrington LE et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  CAS  PubMed  Google Scholar 

  31. Hue S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203(11):2473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujino S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langrish CL et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kullberg MC et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203(11):2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  36. Biancheri P et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6(1):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mangan PR et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    Article  CAS  PubMed  Google Scholar 

  38. Bettelli E et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ahern PP et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33(2):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sujino T et al. Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 2011;141(3):1014–23.

    Article  CAS  PubMed  Google Scholar 

  41. Duerr RH et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang K et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet. 2009;84(3):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pizarro TT et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162(11):6829–35.

    CAS  PubMed  Google Scholar 

  44. Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol. 2004;34(9):2347–55.

    Article  CAS  PubMed  Google Scholar 

  45. Okamura H et al. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol. 1998;10(3):259–64.

    Article  CAS  PubMed  Google Scholar 

  46. Nakanishi K et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev. 2001;12(1):53–72.

    Article  CAS  PubMed  Google Scholar 

  47. Siegmund B et al. IL-1 beta-converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci U S A. 2001;98(23):13249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maeda S et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science. 2005;307(5710):734–8.

    Article  CAS  PubMed  Google Scholar 

  49. Saitoh T et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bersudsky M et al. Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut. 2014;63(4):598–609.

    Article  CAS  PubMed  Google Scholar 

  51. Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr HA, Hartmann G, Dinarello CA, Endres S, Eigler A. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1264–73.

    CAS  PubMed  Google Scholar 

  52. Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL, Derry JM, Viney JL. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut. 2002;50:812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, Takeda K, Akira S, Watanabe M, Ishii H, Hibi T. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol. 2003;38:837–44.

    Article  CAS  PubMed  Google Scholar 

  54. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O’HUigin C, Marincola FM, Trinchieri G. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor Jr W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Booth CJ, Cho JH, Ouyang W, Abraham C, Flavell RA. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 2012;491:259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, Wang K, Han GC, Wang RX, Xiao H, Hou CM, Guo RF, Dou Y, Shen BF, Li Y, Chen GJ. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 2014;7:1106–15.

    Article  CAS  PubMed  Google Scholar 

  57. Fuss IJ et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113(10):1490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heller F et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–64.

    Article  CAS  PubMed  Google Scholar 

  59. Schiechl G et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest. 2011;121(5):1692–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reinisch W et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015;64(6):894–900.

    Article  CAS  PubMed  Google Scholar 

  61. Fuss I et al. IL-13Rα2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut. 2014;63(11):1728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danese S et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  63. Guo L et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc Natl Acad Sci U S A. 2009;106:13463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmitz J et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:470–90.

    Article  CAS  Google Scholar 

  65. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 2009;106:9021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lüthi AU et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.

    Article  PubMed  CAS  Google Scholar 

  67. Lefrancais E et al. IL-33 is processed into mature bioactive forms by neutrophil elastese and cathepsin G. Proc Natl Acad Sci U S A. 2012;109:1673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10.

    Article  CAS  PubMed  Google Scholar 

  69. Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allergy. 2010;40:200–8.

    Article  CAS  PubMed  Google Scholar 

  70. Pastorelli L et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci U S A. 2010;107:8017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seidelin JB et al. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett. 2010;128:80–5.

    Article  CAS  PubMed  Google Scholar 

  72. Rosen M et al. STAT6 deficiency ameliorates severity of oxazolone colitis by decreasing expression of claudin-2 and Th2-inducing cytokines. J Immunol. 2013;190(4):1849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikwa T, Saito Y, Fujiyama Y, Andoh A. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45:999–1007.

    Article  CAS  PubMed  Google Scholar 

  74. Arendse B et al. IL-9 is a susceptibility factor in Leishmani major infection by promoting detrimental Th2/type 2 responses. J Immunol. 2005;174:2205–11.

    Article  CAS  PubMed  Google Scholar 

  75. Kim BS et al. Innate lymphoid cells and allergic inflammation. Curr Opin Immunol. 2013;25:738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252:104–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gerlach K et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15(7):676–86.

    Article  CAS  PubMed  Google Scholar 

  78. Hundorfean G et al. Functional relevance of Th helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:180–6.

    Article  PubMed  Google Scholar 

  79. Prehn JL et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178(7):4033–8.

    Article  CAS  PubMed  Google Scholar 

  80. Takedatsu H et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008;135(2):552–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meylan F et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29(1):79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schreiber TH et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest. 2010;120(10):3629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meylan F et al. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 2014;7:958–68.

    CAS  PubMed  Google Scholar 

  84. Yu X et al. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 2014;7:730–40.

    Article  CAS  PubMed  Google Scholar 

  85. Prehn JL et al. Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol. 2004;112:66–77.

    Article  CAS  PubMed  Google Scholar 

  86. Ahn YO et al. Human group3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and IL-2-dependent proliferation. Eur J Immunol. 2015;45:2335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng Y et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zenewicz LA et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamada N et al. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis. 2010;16(4):568–75.

    Article  PubMed  Google Scholar 

  90. Michelsen KS et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4(3):e4719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. McClane SJ, Rombeau JL. Cytokines and inflammatory bowel disease: a review. JPEN J Parenter Enteral Nutr. 1999;23(5 Suppl):S20–4.

    Article  CAS  PubMed  Google Scholar 

  92. Powrie F et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183(6):2669–74.

    Article  CAS  PubMed  Google Scholar 

  93. Read S, Malmström V, et al. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakamura K et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004;172(2):834–42.

    Article  CAS  PubMed  Google Scholar 

  95. Monteleone G et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13.

    Article  CAS  PubMed  Google Scholar 

  96. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41(4):263–72.

    Article  CAS  Google Scholar 

  97. Boirivant M, Pallone F, Di Giacinto C. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131(6):1786–98.

    Article  CAS  PubMed  Google Scholar 

  98. Izcue A et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity. 2008;28(4):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schiering C et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Y et al. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35(3):337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wohlfert EA et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121(11):4503–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maul J et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78.

    Article  CAS  PubMed  Google Scholar 

  103. Sarmento O et al. Alterations in the FOXP3-EZH2 pathway associates with increased susceptibility to colitis in both mice and human. Inflamm Bowel Dis. 2016;22 suppl 1:S5–6.

    Article  Google Scholar 

  104. Bamias G et al. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology. 2005;128(3):654–66.

    Article  CAS  PubMed  Google Scholar 

  105. Dohi T et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology. 2003;124(3):672–82.

    Article  CAS  PubMed  Google Scholar 

  106. Kotlarz D et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55.

    Article  CAS  PubMed  Google Scholar 

  107. Moran CJ et al. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis. 2013;19(1):115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol. 2010;107:1–29.

    Article  CAS  PubMed  Google Scholar 

  109. Mizoguchi A. Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis. 2012;18(9):1777–84.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.

    Article  CAS  PubMed  Google Scholar 

  111. Wolk K et al. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. 2002;168(11):5397–402.

    Article  CAS  PubMed  Google Scholar 

  112. Pickert G et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. 2009;206(7):1465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Longman RS et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211(8):1571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chung Y et al. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 2006;16(11):902–7.

    Article  CAS  PubMed  Google Scholar 

  115. Duhen T et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63.

    Article  CAS  PubMed  Google Scholar 

  116. Sugimoto K et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118(2):534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilson MS et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol. 2010;184(8):4378–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zwiers A et al. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188(4):1573–7.

    Article  CAS  PubMed  Google Scholar 

  119. Silverberg MS et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. 2009;41(2):216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan J. Fuss MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Zoeten, E.F., Fuss, I.J. (2017). Cytokines and Inflammatory Bowel Disease. In: Mamula, P., Grossman, A., Baldassano, R., Kelsen, J., Markowitz, J. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49215-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49215-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49213-1

  • Online ISBN: 978-3-319-49215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics