Skip to main content

Inflammatory Bowel Diseases and Skeletal Health

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 1087 Accesses

Abstract

Bone and muscle constitute a functional unit, which is essential for locomotion. The muscle-bone unit is frequently affected by inflammatory bowel disease (IBD) and in children especially by Crohn disease. Muscle mass is significantly reduced (cachexia) at diagnosis in children with Crohn disease. These deficits persist despite adequate clinical response to anti-inflammatory therapy and catch-up weight gain. Bone mass and bone architecture are both compromised in pediatric Crohn disease. Linear growth and bone modeling and remodeling are all affected. As a result, bones are shorter. Osteoclasts expand the bone marrow cavity of long bones, while osteoblasts do not expand the periosteal envelope at the same rate, producing a thinner cortex. The cortical bone density is however augmented, probably due to inhibited bone remodeling. Trabecular bone mass may be reduced secondary to decreased bone formation. These changes in IBD can affect bone and muscle by multiple mechanisms including malnutrition (resulting in deficits of macro- and micronutrients), inflammatory cytokines and activated T cells, inhibition of sex steroids and insulin-like growth factor 1, and inactivity. In addition, corticosteroids can directly cause muscle loss, inhibit bone formation, and indirectly increase bone resorption. Antitumor necrosis factor-α and exclusive enteral nutrition on the other hand can reconstitute linear growth and bone modeling and remodeling. In this chapter, we discussed in detail the muscle-bone phenotype in human IBD and animal models of IBD. We also present possible mechanisms by which IBD affects the muscle-bone unit and some options to ensure the achievement of peak bone mass in children with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(3):219–33.

    Article  CAS  PubMed  Google Scholar 

  2. Sylvester FA, Gordon CM, Thayu M, Burnham JM, Denson LA, Essers J, et al. Report of the CCFA pediatric bone, growth and muscle health workshop, New York City, November 11-12, 2011, with updates. Inflamm Bowel Dis. 2013;19(13):2919–26.

    Article  PubMed  Google Scholar 

  3. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  4. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.

    Article  PubMed  Google Scholar 

  5. Wang Q, Seeman E. Skeletal growth and peak bone strength. Best Pract Res Clin Endocrinol Metab. 2008;22(5):687–700.

    Article  PubMed  Google Scholar 

  6. Wang Q, Wang XF, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E. Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res. 2010;25(7):1521–6.

    Article  PubMed  Google Scholar 

  7. Wang Q, Ghasem-Zadeh A, Wang XF, Iuliano-Burns S, Seeman E. Trabecular bone of growth plate origin influences both trabecular and cortical morphology in adulthood. J Bone Miner Res. 2011;26(7):1577–83.

    Article  PubMed  Google Scholar 

  8. Ohlsson C, Darelid A, Nilsson M, Melin J, Mellstrom D, Lorentzon M. Cortical consolidation due to increased mineralization and endosteal contraction in young adult men: a five-year longitudinal study. J Clin Endocrinol Metab. 2011;96(7):2262–9.

    Article  CAS  PubMed  Google Scholar 

  9. Walsh JS, Paggiosi MA, Eastell R. Cortical consolidation of the radius and tibia in young men and women. J Clin Endocrinol Metab. 2012;97(9):3342–8.

    Article  CAS  PubMed  Google Scholar 

  10. Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.

    Article  CAS  PubMed  Google Scholar 

  11. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97(3):308–26.

    Article  CAS  PubMed  Google Scholar 

  13. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000;27(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  14. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nemoto Y, Kanai T, Makita S, Okamoto R, Totsuka T, Takeda K, et al. Bone marrow retaining colitogenic CD4+ T cells may be a pathogenic reservoir for chronic colitis. Gastroenterology. 2007;132(1):176–89.

    Article  CAS  PubMed  Google Scholar 

  16. Ciucci T, Ibanez L, Boucoiran A, Birgy-Barelli E, Pene J, Abou-Ezzi G, et al. Bone marrow Th17 TNFalpha cells induce osteoclast differentiation, and link bone destruction to IBD. Gut. 2015;64(7):1072–81.

    Article  CAS  PubMed  Google Scholar 

  17. Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R, et al. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut. 2013;62(8):1142–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ashcroft AJ, Cruickshank SM, Croucher PI, Perry MJ, Rollinson S, Lippitt JM, et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity. 2003;19(6):849–61.

    Article  CAS  PubMed  Google Scholar 

  19. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64(22):8451–5.

    Article  CAS  PubMed  Google Scholar 

  20. Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grun JR, Lohning M, et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity. 2009;30(5):721–30.

    Article  CAS  PubMed  Google Scholar 

  21. Rauch F. The dynamics of bone structure development during pubertal growth. J Musculoskelet Neuronal Interact. 2012;12(1):1–6.

    CAS  PubMed  Google Scholar 

  22. Bianchi ML, Baim S, Bishop NJ, Gordon CM, Hans DB, Langman CB, et al. Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol. 2010;25(1):37–47.

    Article  PubMed  Google Scholar 

  23. Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402(6759):304–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe Y, Namba A, Aida Y, Honda K, Tanaka H, Suzuki N, et al. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes. Mediators Inflamm. 2009;2009:308596.

    Article  PubMed  CAS  Google Scholar 

  27. Hoshino A, Iimura T, Ueha S, Hanada S, Maruoka Y, Mayahara M, et al. Deficiency of chemokine receptor CCR1 causes osteopenia due to impaired functions of osteoclasts and osteoblasts. J Biol Chem. 2010;285(37):28826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mun SH, Ko NY, Kim HS, Kim JW, Kim DK, Kim AR, et al. Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci. 2010;67:3883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gilbert LC, Chen H, Lu X, Nanes MS. Chronic low dose tumor necrosis factor-alpha (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone. 2013;56(1):174–83.

    Article  CAS  PubMed  Google Scholar 

  30. Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 2013;57:68–75.

    Article  CAS  PubMed  Google Scholar 

  31. Humphrey MB, Nakamura MC. A comprehensive review of immunoreceptor regulation of osteoclasts. Clin Rev Allergy Immunol. 2016;51:48–58.

    Article  CAS  PubMed  Google Scholar 

  32. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  33. Dore RK, Cohen SB, Lane NE, Palmer W, Shergy W, Zhou L, et al. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis. 2010;69(5):872–5.

    Article  CAS  PubMed  Google Scholar 

  34. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  35. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12(9):1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 1998;247(3):610–5.

    Article  CAS  PubMed  Google Scholar 

  37. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002;416(6882):744–9.

    Article  CAS  PubMed  Google Scholar 

  38. Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res. 2001;16(10):1787–94.

    Article  CAS  PubMed  Google Scholar 

  39. Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119(Pt 7):1283–96.

    Article  CAS  PubMed  Google Scholar 

  40. Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med. 2014;20(11):1279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012;18(3):405–12.

    Article  CAS  PubMed  Google Scholar 

  42. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600–5.

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki H, Hou L, Belani A, Wang CY, Uchiyama T, Muller R, et al. IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo. J Immunol. 2000;165(7):3626–30.

    Article  CAS  PubMed  Google Scholar 

  44. Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, et al. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol. 2009;183(4):2444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshimatsu M, Kitaura H, Fujimura Y, Eguchi T, Kohara H, Morita Y, et al. IL-12 inhibits TNF-alpha induced osteoclastogenesis via a T cell-independent mechanism in vivo. Bone. 2009;45(5):1010–6.

    Article  CAS  PubMed  Google Scholar 

  46. Kitaura H, Fujimura Y, Yoshimatsu M, Kohara H, Morita Y, Aonuma T, et al. IL-12- and IL-18-mediated, nitric oxide-induced apoptosis in TNF-alpha-mediated osteoclastogenesis of bone marrow cells. Calcif Tissue Int. 2011;89(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  47. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res. 2014;29(9):1981–92.

    Article  CAS  PubMed  Google Scholar 

  49. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell. 2008;132(5):794–806.

    Article  CAS  PubMed  Google Scholar 

  50. Kim HS, Kim DK, Kim AR, Mun SH, Lee SK, Kim JH, et al. Fyn positively regulates the activation of DAP12 and FcRgamma-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal. 2012;24(6):1306–14.

    Article  CAS  PubMed  Google Scholar 

  51. Kim H, Kim T, Jeong BC, Cho IT, Han D, Takegahara N, et al. Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. Cell Metab. 2013;17(2):249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Decker CE, Yang Z, Rimer R, Park-Min KH, Macaubas C, Mellins ED, et al. Tmem178 acts in a novel negative feedback loop targeting NFATc1 to regulate bone mass. Proc Natl Acad Sci U S A. 2015;112(51):15654–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64.

    Article  CAS  PubMed  Google Scholar 

  54. Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SE, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  56. Roysland R, Masson S, Omland T, Milani V, Bjerre M, Flyvbjerg A, et al. Prognostic value of osteoprotegerin in chronic heart failure: the GISSI-HF trial. Am Heart J. 2010;160(2):286–93.

    Article  PubMed  CAS  Google Scholar 

  57. Montagnana M, Lippi G, Danese E, Guidi GC. The role of osteoprotegerin in cardiovascular disease. Ann Med. 2013;45(3):254–64.

    Article  CAS  PubMed  Google Scholar 

  58. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.

    Article  CAS  PubMed  Google Scholar 

  60. Summers deLuca L, Gommerman JL. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol. 2012;12(5):339–51.

    PubMed  Google Scholar 

  61. Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol. 1998;161(11):6113–21.

    CAS  PubMed  Google Scholar 

  62. Chino T, Draves KE, Clark EA. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J Leukoc Biol. 2009;86(4):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest. 2011;121(7):2534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sylvester FA, Davis PM, Wyzga N, Hyams JS, Lerer T. Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr. 2006;148(4):461–6.

    Article  CAS  PubMed  Google Scholar 

  65. Nahidi L, Leach ST, Sidler MA, Levin A, Lemberg DA, Day AS. Osteoprotegerin in pediatric Crohn’s disease and the effects of exclusive enteral nutrition. Inflamm Bowel Dis. 2011;17(2):516–23.

    Article  PubMed  Google Scholar 

  66. Franchimont N, Reenaers C, Lambert C, Belaiche J, Bours V, Malaise M, et al. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clin Exp Immunol. 2004;138(3):491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54(4):479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arijs I, Li K, Toedter G, Quintens R, Van Lommel L, Van Steen K, et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut. 2009;58:1612–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sylvester FA, Turner D, Draghi 2nd A, Uuosoe K, McLernon R, Koproske K, et al. Fecal osteoprotegerin may guide the introduction of second-line therapy in hospitalized children with ulcerative colitis. Inflamm Bowel Dis. 2011;17(8):1726–30.

    Article  PubMed  Google Scholar 

  70. Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone. 2015;70:28–36.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141(7):2674–82.

    Article  CAS  PubMed  Google Scholar 

  72. Difedele LM, He J, Bonkowski EL, Han X, Held MA, Bohan A, et al. Tumor necrosis factor-a blockade restores growth hormone signaling in murine colitis. Gastroenterology. 2005;128(5):1278–91.

    Article  CAS  PubMed  Google Scholar 

  73. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006;281(7):4326–33.

    Article  CAS  PubMed  Google Scholar 

  74. Yamazaki M, Fukushima H, Shin M, Katagiri T, Doi T, Takahashi T, et al. Tumor necrosis factor alpha represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB. J Biol Chem. 2009;284(51):35987–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee HL, Yi T, Woo KM, Ryoo HM, Kim GS, Baek JH. Msx2 mediates the inhibitory action of TNF-alpha on osteoblast differentiation. Exp Mol Med. 2010;42(6):437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shen F, Ruddy MJ, Plamondon P, Gaffen SL. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-a-induced genes in bone cells. J Leukoc Biol. 2005;77(3):388–99.

    Article  CAS  PubMed  Google Scholar 

  77. Uno JK, Kolek OI, Hines ER, Xu H, Timmermann BN, Kiela PR, et al. The role of tumor necrosis factor-a in down-regulation of osteoblast Phex gene expression in experimental murine colitis. Gastroenterology. 2006;131(2):497–509.

    Article  CAS  PubMed  Google Scholar 

  78. Majewski PM, Thurston RD, Ramalingam R, Kiela PR, Ghishan FK. Cooperative role of NF-{kappa}B and poly(ADP-ribose) polymerase 1 (PARP-1) in the TNF-induced inhibition of PHEX expression in osteoblasts. J Biol Chem. 2010;285(45):34828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jang WG, Jeong BC, Kim EJ, Choi H, Oh SH, Kim DK, et al. Cyclic AMP Response Element-binding Protein H (CREBH) mediates the inhibitory actions of tumor necrosis factor alpha in osteoblast differentiation by stimulating Smad1 degradation. J Biol Chem. 2015;290(21):13556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thayu M, Leonard MB, Hyams JS, Crandall WV, Kugathasan S, Otley AR, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn's disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6(12):1378–84.

    Article  CAS  PubMed  Google Scholar 

  81. Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, et al. Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100(7):2630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Calvi LM. Osteolineage cells and regulation of the hematopoietic stem cell. Best Pract Res Clin Haematol. 2013;26(3):249–52.

    Article  CAS  PubMed  Google Scholar 

  83. Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci. 2016;1364:11–24.

    Article  CAS  PubMed  Google Scholar 

  84. Takayanagi H. Osteoimmunology in 2014: two-faced immunology-from osteogenesis to bone resorption. Nat Rev Rheumatol. 2015;11(2):74–6.

    Article  CAS  PubMed  Google Scholar 

  85. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160(7):3513–21.

    CAS  PubMed  Google Scholar 

  86. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12(1):R29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Li JY, D'Amelio P, Robinson J, Walker LD, Vaccaro C, Luo T, et al. IL-17A is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab. 2015;22(5):799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci U S A. 2015;112(22):7061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pacifici R. Role of T cells in ovariectomy induced bone loss–revisited. J Bone Miner Res. 2012;27(2):231–9.

    Article  PubMed  Google Scholar 

  91. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelchtermans H, Geboes L, Mitera T, Huskens D, Leclercq G, Matthys P. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis. 2009;68(5):744–50.

    Article  CAS  PubMed  Google Scholar 

  94. Terauchi M, Li JY, Bedi B, Baek KH, Tawfeek H, Galley S, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pappalardo A, Thompson K. Novel immunostimulatory effects of osteoclasts and macrophages on human gammadelta T cells. Bone. 2015;71:180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li H, Hong S, Qian J, Zheng Y, Yang J, Yi Q. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood. 2010;116(2):210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kiesel JR, Buchwald ZS, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182(9):5477–87.

    Article  CAS  PubMed  Google Scholar 

  98. Buchwald ZS, Kiesel JR, DiPaolo R, Pagadala MS, Aurora R. Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro. PLoS One. 2012;7(6):e38199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buchwald ZS, Yang C, Nellore S, Shashkova EV, Davis JL, Cline A, et al. A bone anabolic effect of RANKL in a murine model of osteoporosis mediated through FoxP3+ CD8 T cells. J Bone Miner Res. 2015;30(8):1508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503(7475):272–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cao SS. Endoplasmic reticulum stress and unfolded protein response in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:636–44.

    Article  PubMed  Google Scholar 

  103. Wu Y, Yang M, Fan J, Peng Y, Deng L, Ding Y, et al. Deficiency of osteoblastic Arl6ip5 impaired osteoblast differentiation and enhanced osteoclastogenesis via disturbance of ER calcium homeostasis and induction of ER stress-mediated apoptosis. Cell Death Dis. 2014;5:e1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Murakami T, Saito A, Hino S, Kondo S, Kanemoto S, Chihara K, et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol. 2009;11(10):1205–11.

    Article  CAS  PubMed  Google Scholar 

  105. Saito A, Ochiai K, Kondo S, Tsumagari K, Murakami T, Cavener DR, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286(6):4809–18.

    Article  CAS  PubMed  Google Scholar 

  106. Tohmonda T, Miyauchi Y, Ghosh R, Yoda M, Uchikawa S, Takito J, et al. The IRE1alpha-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep. 2011;12(5):451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tohmonda T, Yoda M, Mizuochi H, Morioka H, Matsumoto M, Urano F, et al. The IRE1alpha-XBP1 pathway positively regulates parathyroid hormone (PTH)/PTH-related peptide receptor expression and is involved in pth-induced osteoclastogenesis. J Biol Chem. 2013;288(3):1691–5.

    Article  CAS  PubMed  Google Scholar 

  108. Tohmonda T, Yoda M, Iwawaki T, Matsumoto M, Nakamura M, Mikoshiba K, et al. IRE1alpha/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J Clin Invest. 2015;125(8):3269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases. J Cell Physiol. 2016;231(2):288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35(5):1144–56.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Chen G, Zhang W, Xu N, Zhu JY, Jia J, et al. Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-1alpha/BNIP3 signaling pathway. J Cell Physiol. 2012;227(2):639–48.

    Article  CAS  PubMed  Google Scholar 

  112. Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, et al. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014;61:125–31.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013;28(11):2414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 2013;52(1):524–31.

    Article  CAS  PubMed  Google Scholar 

  115. Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 2014;10(11):1965–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhang L, Guo YF, Liu YZ, Liu YJ, Xiong DH, Liu XG, et al. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J Bone Miner Res. 2010;25(7):1572–80.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Van bezooijen RL, Farih-Sips HC, Papapoulos SE, Lowik CW. Interleukin-17: a new bone acting cytokine in vitro. J Bone Miner Res. 1999;14(9):1513–21.

    Article  CAS  PubMed  Google Scholar 

  118. Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, et al. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem. 2009;108(4):947–55.

    Article  CAS  PubMed  Google Scholar 

  119. Balani D, Aeberli D, Hofstetter W, Seitz M. Interleukin-17A stimulates granulocyte-macrophage colony-stimulating factor release by murine osteoblasts in the presence of 1,25-dihydroxyvitamin D(3) and inhibits murine osteoclast development in vitro. Arthritis Rheum. 2013;65(2):436–46.

    Article  CAS  PubMed  Google Scholar 

  120. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells. 2012;30(4):762–72.

    Article  CAS  PubMed  Google Scholar 

  122. Jimenez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors–From microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  123. Takami M, Kim N, Rho J, Choi Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol. 2002;169(3):1516–23.

    Article  CAS  PubMed  Google Scholar 

  124. Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res. 2002;17(7):1211–8.

    Article  CAS  PubMed  Google Scholar 

  125. Zou W, Schwartz H, Endres S, Hartmann G, Bar-Shavit Z. CpG oligonucleotides: novel regulators of osteoclast differentiation. FASEB J. 2002;16(3):274–82.

    Article  CAS  PubMed  Google Scholar 

  126. Krisher T, Bar-Shavit Z. Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem. 2014;115(12):2146–54.

    Article  CAS  PubMed  Google Scholar 

  127. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(6):1357–67.

    Article  CAS  Google Scholar 

  128. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology. 2015;156(9):3169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin CL, Moniz C, Chambers TJ, Chow JW. Colitis causes bone loss in rats through suppression of bone formation. Gastroenterology. 1996;111(5):1263–71.

    Article  CAS  PubMed  Google Scholar 

  131. Dresner-Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M. Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology. 2004;127(3):792–801.

    Article  CAS  PubMed  Google Scholar 

  132. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Byrne FR, Morony S, Warmington K, Geng Z, Brown HL, Flores SA, et al. CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut. 2005;54(1):78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Issenman RM, Atkinson SA, Radoja C, Fraher L. Longitudinal assessment of growth, mineral metabolism, and bone mass in pediatric Crohn’s disease. J Pediatr Gastroenterol Nutr. 1993;17(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  135. Gupta A, Paski S, Issenman R, Webber C. Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom. 2004;7(3):290–5.

    Article  PubMed  Google Scholar 

  136. Harpavat M, Greenspan SL, O'Brien C, Chang CC, Bowen A, Keljo DJ. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr. 2005;40(3):295–300.

    Article  PubMed  Google Scholar 

  137. van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87(4):341–7; discussion 341−7.

    Google Scholar 

  138. Ahmed SF, Horrocks IA, Patterson T, Zaidi S, Ling SC, McGrogan P, et al. Bone mineral assessment by dual energy X-ray absorptiometry in children with inflammatory bowel disease: evaluation by age or bone area. J Pediatr Gastroenterol Nutr. 2004;38(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  139. Bourges O, Dorgeret S, Alberti C, Hugot JP, Sebag G, Cezard JP. Low bone mineral density in children with Crohn’s disease. Arch Pediatr. 2004;11(7):800–6.

    Article  CAS  PubMed  Google Scholar 

  140. Scheer K, Kratzsch J, Deutscher J, Gelbrich G, Borte G, Kiess W. Bone metabolism in 53 children and adolescents with chronic inflammatory bowel disease. Klin Padiatr. 2004;216(2):62–6.

    Article  CAS  PubMed  Google Scholar 

  141. Semeao EJ, Jawad AF, Zemel BS, Neiswender KM, Piccoli DA, Stallings VA. Bone mineral density in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 1999;5(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  142. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136(1):123–30.

    Article  PubMed  Google Scholar 

  143. Boot AM, Bouquet J, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut. 1998;42(2):188–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsampalieros A, Berkenstock MK, Zemel BS, Griffin L, Shults J, Burnham JM, et al. Changes in trabecular bone density in incident pediatric Crohn’s disease: a comparison of imaging methods. Osteoporos Int. 2014;25(7):1875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schmidt S, Mellstrom D, Norjavaara E, Sundh V, Saalman R. Longitudinal assessment of bone mineral density in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2012;55(5):511–8.

    Article  PubMed  Google Scholar 

  146. Neu CM, Manz F, Rauch F, Merkel A, Schoenau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  147. Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106(5):988–98.

    Article  PubMed  Google Scholar 

  148. Thayu M, Shults J, Burnham JM, Zemel BS, Baldassano RN, Leonard MB. Gender differences in body composition deficits at diagnosis in children and adolescents with Crohn’s disease. Inflamm Bowel Dis. 2007;13(9):1121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sylvester FA, Leopold S, Lincoln M, Hyams JS, Griffiths AM, Lerer T. A two-year longitudinal study of persistent lean tissue deficits in children with Crohn’s disease. Clin Gastroenterol Hepatol. 2009;7(4):452–5.

    Article  PubMed  Google Scholar 

  150. Laakso S, Valta H, Verkasalo M, Toiviainen-Salo S, Makitie O. Compromised peak bone mass in patients with inflammatory bowel disease – a prospective study. J Pediatr. 2014;164(6):1436–43.e1.

    Article  PubMed  Google Scholar 

  151. Pappa H, Thayu M, Sylvester F, Leonard M, Zemel B, Gordon C. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53(1):11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21:331–7.

    Article  CAS  PubMed  Google Scholar 

  153. Bechtold S, Alberer M, Arenz T, Putzker S, Filipiak-Pittroff B, Schwarz HP, et al. Reduced muscle mass and bone size in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(2):216–25.

    Article  PubMed  Google Scholar 

  154. Hyams JS, Wyzga N, Kreutzer DL, Justinich CJ, Gronowicz GA. Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediatr Gastroenterol Nutr. 1997;24(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  155. Varghese S, Wyzga N, Griffiths AM, Sylvester FA. Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J Pediatr Gastroenterol Nutr. 2002;35(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  156. Sylvester FA, Wyzga N, Hyams JS, Gronowicz GA. Effect of Crohn’s disease on bone metabolism in vitro: a role for interleukin-6. J Bone Miner Res. 2002;17(4):695–702.

    Article  CAS  PubMed  Google Scholar 

  157. Laurent MR, Dubois V, Claessens F, Verschueren SM, Vanderschueren D, Gielen E, et al. Muscle-bone interactions: from experimental models to the clinic? A critical update. Mol Cell Endocrinol. 2016;432:14–36.

    Article  CAS  PubMed  Google Scholar 

  158. Thayu M, Denson LA, Shults J, Zemel BS, Burnham JM, Baldassano RN, et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn’s disease. Gastroenterology. 2010;139:430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Werkstetter KJ, Ullrich J, Schatz SB, Prell C, Koletzko B, Koletzko S. Lean body mass, physical activity and quality of life in paediatric patients with inflammatory bowel disease and in healthy controls. J Crohns Colitis. 2012;6:665–73.

    Article  PubMed  Google Scholar 

  160. Reich KM, Fedorak RN, Madsen K, Kroeker KI. Vitamin D improves inflammatory bowel disease outcomes: Basic science and clinical review. World J Gastroenterol WJG. 2014;20(17):4934–47.

    Article  PubMed  CAS  Google Scholar 

  161. Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol. 2016;22(3):933–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Prosnitz AR, Leonard MB, Shults J, Zemel BS, Hollis BW, Denson LA, et al. Changes in vitamin D and parathyroid hormone metabolism in incident pediatric Crohn’s disease. Inflamm Bowel Dis. 2013;19(1):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Middleton JP, Bhagavathula AP, Gaye B, Alvarez JA, Huang CS, Sauer CG, et al. Vitamin D status and bone mineral density in African American children with Crohn disease. J Pediatr Gastroenterol Nutr. 2013;57(5):587–93.

    Article  CAS  PubMed  Google Scholar 

  164. Nowak JK, Grzybowska-Chlebowczyk U, Landowski P, Szaflarska-Poplawska A, Klincewicz B, Adamczak D, et al. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci Rep. 2014;4:4768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Nakajima S, Iijima H, Egawa S, Shinzaki S, Kondo J, Inoue T, et al. Association of vitamin K deficiency with bone metabolism and clinical disease activity in inflammatory bowel disease. Nutrition. 2011;27(10):1023–8.

    Article  CAS  PubMed  Google Scholar 

  166. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133(10):795–9.

    Article  CAS  PubMed  Google Scholar 

  167. Loftus EJ, Crowson CS, Sandborn WJ, Tremaine WJ, O'Fallon WM, Melton 3rd LJ. Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County, Minnesota. Gastroenterology. 2002;123(2):468–75.

    Article  PubMed  Google Scholar 

  168. Persad R, Jaffer I, Issenman RM. The prevalence of long bone fractures in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2006;43(5):597–602.

    Article  PubMed  Google Scholar 

  169. Kappelman MD, Galanko JA, Porter CQ, Sandler RS. Risk of diagnosed fractures in children with inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:1125–30.

    Article  PubMed  Google Scholar 

  170. Siffledeen JS, Siminoski K, Jen H, Fedorak RN. Vertebral fractures and role of low bone mineral density in Crohn’s disease. Clin Gastroenterol Hepatol. 2007;5(6):721–8.

    Article  PubMed  Google Scholar 

  171. Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology. 1997;112(5):1710–3.

    Article  CAS  PubMed  Google Scholar 

  172. Tsampalieros A, Lam CK, Spencer JC, Thayu M, Shults J, Zemel BS, et al. Long-term inflammation and glucocorticoid therapy impair skeletal modeling during growth in childhood Crohn disease. J Clin Endocrinol Metab. 2013;98(8):3438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Al-Shaar L, Mneimneh R, Nabulsi M, Maalouf J, Fuleihan GH. Vitamin D3 dose requirement to raise 25-hydroxyvitamin D to desirable levels in adolescents: results from a randomized controlled trial. J Bone Miner Res. 2014;29(4):944–51.

    Article  CAS  PubMed  Google Scholar 

  174. Werkstetter KJ, Schatz SB, Alberer M, Filipiak-Pittroff B, Koletzko S. Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn’s disease patients. Ann Nutr Metab. 2013;63(1–2):10–6.

    Article  CAS  PubMed  Google Scholar 

  175. Bernstein CN, Targownik LE, Leslie WD. What is the role for bisphosphonates in IBD? Gut. 2014;63(9):1369–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sylvester MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sylvester, F. (2017). Inflammatory Bowel Diseases and Skeletal Health. In: Mamula, P., Grossman, A., Baldassano, R., Kelsen, J., Markowitz, J. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49215-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49215-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49213-1

  • Online ISBN: 978-3-319-49215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics