Skip to main content

Microbial Cultures: Maintenance, Preservation and Registration

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

Microorganisms account for major biomass on the Earth and play an important role in biogeochemical processes that are important for survival of all forms of life on this planet. In this context, the conservation of microbial communities and their ecosystem should be given high priority. Microbiologists have always thought of preservation of culturable microbial diversity in adequate manner without changes in morphological, physiological, and genetic traits. Culture collections (ex situ conservation), also known as microbial resource centres (MRCs), have made huge contributions in storage and preservation of all kinds of microorganisms. In this chapter, we have discussed ex situ preservation methods of microorganisms followed in National Agriculturally Important Microbial Culture Collection (NAIMCC) and other culture collections across the world. Four international culture collections and seventeen (17) national culture collections having either status of International Depository Authority (IDA) or National Biodiversity Authority (NBA) or both have been discussed in this chapter. This chapter also highlights short-, medium-, and long- term methods used for the preservation of microorganisms along with some latest techniques such as Sordelli’s method, vitrification, and encapsulation. Some critical factors that affect the cell survival and recovery during the process of preservation have also been incorporated. In general, description of NAIMCC with its infrastructure and activities including registration of elite microbial germplasm has been highlighted for benefits of researchers, farmers, and industries of India and abroad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allgaier M, Brückner S, Jaspers E, Grossart H-P (2007) Intra- and inter-lake variability of free-living and particle-associated Actinobacteria communities. Environ Microbiol 9:2728–2741. doi:10.1111/j.1462-2920.2007.01385.x

    Article  CAS  PubMed  Google Scholar 

  • Bhat SN, Sharma A, Bhat SV (2005) Vitrification and glass transition of water: insights from spin probe ESR. Phys Rev Lett 95:235702. doi:10.1103/PhysRevLett.95.235702

    Article  PubMed  Google Scholar 

  • Burdsall HH Jr, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280

    Article  Google Scholar 

  • Castellani A (1963) Further researches on the long viability and growth of many pathogenic fungi and some bacteria in sterile distilled water. Mycopathol Mycol Appl 20:1–6. doi:10.1007/BF02054872

    Article  CAS  PubMed  Google Scholar 

  • Challen MP, Elliot TJ (1986) Polypropylene straw ampoules for the storage of microorganisms in liquid nitrogen. J Microbiol Methods 5:11–22. doi:10.1016/0167-7012(86)90019-9

    Article  Google Scholar 

  • Cockell CS, Jones HL (2009) Advancing the case for microbial conservation. Oryx 43:520–526

    Article  Google Scholar 

  • Diogo HC, Sarpieri A, Pires MC (2005) Fungi preservation in distilled water. An Bras Dermatol 80:591–594

    Article  Google Scholar 

  • Ellis JJ (1979) Preserving fungus strains in sterile water. Mycologia 71:1072–1075. doi:10.2307/3759297

    Article  Google Scholar 

  • Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, Phan L (2009) Physical and biological aspects of renal vitrification. Organogenesis 5:167–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78:807–815. doi:10.1139/b00-042

    Google Scholar 

  • Gherna RL (2009) Culture preservation, Encyclopedia of industrial biotechnology. Wiley, pp. 153–161

    Google Scholar 

  • Homolka L (2014) Preservation of live cultures of basidiomycetes—recent methods. Fungal Biol 118:107–125. doi:10.1016/j.funbio.2013.12.002

    Article  PubMed  Google Scholar 

  • Kulkarni G, Chitte R (2015) Preservation of thermophilic bacterial spores using filter paper disc techniques. J Bioprocess Biotechniques 5:223. doi:10.4172/2155-9821.1000223

    Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CH, Shollenberger LM (2003) Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol 37:45–50

    Article  PubMed  Google Scholar 

  • Malik KA (1990) A simplified liquid-drying method for the preservation of microorganisms sensitive to freezing and freeze-drying. J Microbiol Methods 12:125–132. doi:10.1016/0167-7012(90)90022-X

    Article  Google Scholar 

  • Marx DH, Daniel WJ (1976) Maintaining cultures of ectomycorrhizal and plant pathogenic fungi in sterile water cold storage. Can J Microbiol 22:338–341. doi:10.1139/m76-051

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y (2000) Survival rate of microbes after freeze-drying and long-term storage. Cryobiology 41:251–255

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32

    Article  PubMed  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2008) Survival of freeze-dried bacteria. J Gen Appl Microbiol 54:9–24

    Article  CAS  PubMed  Google Scholar 

  • Olembo R, Hawksworth D (1991) Importance of microorganisms and invertebrates as components of biodiversity. Biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. In: Proceedings of the First Workshop on the Ecological Foundations of Sustainable Agriculture (WEFSA 1). CAB International, London, pp 7–15

    Google Scholar 

  • Overmann J (2015) Significance and future role of microbial resource centers. Syst Appl Microbiol 38:258–265

    Article  PubMed  Google Scholar 

  • Perkins DD (1962) Preservation of Neurospora stock cultures with anhydrous silica gel. Can J Microbiol 8:591–594

    Article  Google Scholar 

  • Pichugin YI (1993) Results and perspectives in searching of new endocellular cryoprotectants. Probl Cryobiol 2:3–8

    Google Scholar 

  • Prakash O, Nimonkar Y, Shouche YS (2013) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–575

    Article  CAS  PubMed  Google Scholar 

  • Richter DL, Bruhn JN (1989) Revival of saprotrophic and mycorrhizal basidiomycete cultures from cold storage in sterile water. Can J Microbiol 35:1055–1060. doi:10.1139/m89-176

    Article  Google Scholar 

  • Richter DL, Kangas LC, Smith JK, Laks PE (2010) Comparison of effectiveness of wood decay fungi maintained by annual subculture on agar and stored in sterile water for 18 years. Can J Microbiol 56:268–271. doi:10.1139/W10-001

    Article  CAS  PubMed  Google Scholar 

  • Sakane T, Fukuda I, Itoh T, Yokota A (1992) Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying. J Microbiol Methods 16:281–287. doi:10.1016/0167-7012(92)90080-N

    Article  Google Scholar 

  • Scharf CA (2009) Extrasolar planets and astrobiology. University Science Books, Sausalito, CA

    Google Scholar 

  • Sharma A, Shouche Y (2014) Microbial culture collection (MCC) and International Depositary Authority (IDA) at National Centre for Cell Science, Pune. Ind J Microbiol 54:129–133. doi:10.1007/s12088-014-0447-y

    Article  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52. doi:10.5829/idosi.ijmr.2012.3.1.61103

    Google Scholar 

  • Smith D, Kirsop BE, Snell JJS (1984) Maintenance of microorganisms: a manual of laboratory methods. Academic, London

    Google Scholar 

  • Smith D (2003) Culture collections over the world. Int Microbiol 6:95–100. doi:10.1007/s10123-003-0114-3

    Article  PubMed  Google Scholar 

  • Smith D, Ryan MJ, Stackebrandt E (2008) The ex situ conservation of microorganisms: aiming at a certified quality management, Biotechnology. EOLSS Publisher, Oxford

    Google Scholar 

  • Smith D, Ryan M (2012) Implementing best practices and validation of cryopreservation techniques for microorganisms. Scientific World Journal 2012:805659. doi:10.1100/2012/805659

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano S (1970) Sordelli’s method for preservation of microbial cultures by desiccation in vacuum. In Int Conf Cult Collect Tokyo 1968 Cult Collect Microorg, pp 298–305

    Google Scholar 

  • Stomeo F, Portillo M, Gonzalez J (2009) Assessment of bacterial and fungal growth on natural substrates: consequences for preserving caves with prehistoric paintings. Curr Microbiol 59:321–325. doi:10.1007/s00284-009-9437-4

    Article  CAS  PubMed  Google Scholar 

  • Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26:3327–3331. doi:10.1016/j.biomaterials.2004.08.029

    Article  CAS  PubMed  Google Scholar 

  • Tommerup IC (1988) Long-term preservation by L-drying and storage of vesicular arbuscular mycorrhizal fungi. Trans Br Mycol Soc 90:585–591. doi:10.1016/S0007-1536(88)80063-9

    Article  Google Scholar 

  • Uruburu F (2003) History and services of culture collections. Int Microbiol 6:101–103. doi:10.1007/s10123-003-0115-2

    Article  PubMed  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385. doi:10.1017/S0954102000000420

    Article  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2007) Extinction of microbes: evidence and potential consequences. Endangered Species Res 3:205–215

    Article  Google Scholar 

Download references

Acknowledgements

Most of the information regarding culture collections has been culled from the websites of the World Federation for Culture Collections (WFCC) and individual culture collections. The authors are thankful to the collections cited in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, S.K., Kumar, R., Vaishnav, A., Sharma, P.K., Singh, U.B., Sharma, A.K. (2017). Microbial Cultures: Maintenance, Preservation and Registration. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_22

Download citation

Publish with us

Policies and ethics