Skip to main content

Arbuscular Mycorrhizal Fungi: Evolution and Functions in Alleviating Plant Drought Stress

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

Arbuscular mycorrhizal (AM) fungi can form mutualistic associations known as AM symbioses with the majority of terrestrial plant species. They are essential for plant adaptation to various environmental stresses, such as nutrient deficiency, environmental pollution, and drought. Many studies have proved the positive influences of AM on plant drought tolerance, and great efforts have been made to uncover the underlying mechanisms. The progress in direct involvement of AM fungi in plant–water relations, however, is hindered by the lack of knowledge on AM fungal genetics. Here, we discuss the advantages and applicability of three tools and techniques, including comparative genomics, RNA sequencing, and noninvasive microelectrode ion flux estimation, in studying AM fungal evolutionary profiling and functioning and expect to propose new perspectives for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ares Jr M (2011) Methods for processing high-throughput RNA sequencing data. Cold Spring Harb Protoc. doi:10.1101/pdb.top083352

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Biol 59:2029–2041

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  • Babourina O, Newman I, Shabala S (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99:2433–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  PubMed  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  CAS  PubMed  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Cornish AJ, Markowetz F (2014) SANTA: quantifying the functional content of molecular networks. PLoS Comput Biol 10:e1003808

    Article  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  PubMed  Google Scholar 

  • Devlin CL, Smith PJ (1996) A non-invasive vibrating calcium-selective electrode measures acetylcholine-induced calcium flux across the sarcolemma of a smooth muscle. J Comp Physiol 166:270–277

    Article  CAS  Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Res Mol Biol 75:293–320

    Article  CAS  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815

    Article  Google Scholar 

  • Geurts R, Vleeshouwers VGAA (2012) Mycorrhizal symbiosis: ancient signaling mechanisms co-opted. Curr Biol 22:997–999

    Article  Google Scholar 

  • Gillies RJ (1994) NMR spectroscopy in biomedicine. Academic, New York

    Google Scholar 

  • Graveley BR (2008) Molecular biology: power sequencing. Nature 453:1197–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft DH (2015) Using comparative genomics to drive new discoveries in microbiology. Curr Opin Microbiol 23:189–196

    Article  CAS  PubMed  Google Scholar 

  • Haft DH, Selengut JD, Richter RA et al (2013) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41:387–395

    Article  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63:614–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SE, Naik RR, Stone MO (2000) Use of small fluorescent molecules to monitor channel activity. Biochem Biophys Res Commun 279:208–212

    Article  CAS  PubMed  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schnidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542

    Article  CAS  PubMed  Google Scholar 

  • Kuo MMC, Saimi Y, Kung C (2003) Gain-of-function mutations indicate that Escherichia coli Kch forms a functional conduit in vivo. EMBO J 22:4049–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lew RR (1999) Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa. Eur J Cell Biol 78:892–902

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chen BD (2013) Measurement of extracellular Ca2+ influx and intracellular H+ efflux in response to glycerol and PEG6000 treatments. Bio-protocol. http://www.bio-protocol.org/911

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Li T, Lin G, Zhang X, Chen YL, Zhang SB, Chen BD (2014) Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza 24:595–602

    Article  PubMed  Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  PubMed  Google Scholar 

  • Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM (2005) Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology 51:1995–2003

    Article  Google Scholar 

  • Maloney PC, Wilson TH (1996) Ion-coupled transport and transporters. In: Neidhardt P (ed) Escherichia coli and Salmonella. ASM, Washington, DC, pp 1130–1148

    Google Scholar 

  • Marguerat S, Wilhelm BT, BÓ“hler J (2008) Next-generation sequencing: applications beyond genomes. Biochem Soc Trans 36:1091–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  CAS  PubMed  Google Scholar 

  • McLamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308–5320

    Article  CAS  PubMed  Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nieduszynski CA, Liti G (2011) From sequence to function: insights from natural variation in budding yeasts. BBA 1810:959–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (2000) Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 44:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmizo C, Yata M, Katsu T (2004) Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes. J Microbiol Methods 59:173–179

    Article  CAS  PubMed  Google Scholar 

  • Orlov DS, Nguyen T, Lehrer RI (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49:325–328

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Azcon R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for â–³1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant 65:211–221

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 198:177–188

    Article  Google Scholar 

  • Roos W (2000) Ion mapping in plant cells – methods and applications in signal transduction research. Planta 210:347–370

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muňoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  PubMed  Google Scholar 

  • Sanders IR, Croll D (2010) Arbuscular mycorrhizal: the challenge to understand the genetics of the fungal partner. Annu Rev Genet 44:271–292

    Article  CAS  PubMed  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith PJ, Hammar K, Porterfield DM, Sanger RH, Trimarchi JR (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46:398–417

    Article  CAS  PubMed  Google Scholar 

  • Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S (2015) De novo assembly and characterization of the field pea transcriptome using RNA-Seq. BMC Genomics 16:611. doi:10.1186/s12864-015-1815-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333:863–882

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 10:57–63

    Article  CAS  Google Scholar 

  • Wood JM (1999) Osmosensing in bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cell. PLoS One 9:1–13

    Google Scholar 

  • Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B (1999) Ion channels in plant signaling. Cell Mol Life Sci 55:183–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work presented here is supported by Chinese Academy of Sciences (XDB15030100) and National Natural Science Foundation of China (41371264, 41401281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, T. (2017). Arbuscular Mycorrhizal Fungi: Evolution and Functions in Alleviating Plant Drought Stress. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_19

Download citation

Publish with us

Policies and ethics