Skip to main content

Optimal Sensitivity Design of Multispectral Camera Via Broadband Absorption Filters Based on Compressed Sensing

  • Conference paper
  • First Online:
Book cover 3rd International Symposium of Space Optical Instruments and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 192))

  • 1197 Accesses

Abstract

Spectrum acquisition of imaging scenes with super spectral resolution can be realized by multichannel spectral camera with broadband absorption filters under the condition that the multichannel spectral camera sensitivity is optimized. Algorithms to broadband absorption filters selection to optimize the camera sensitivity proposed in the past have no strict theoretical guarantees on reconstruction accuracy. Consequently, the insight had not been uncovered until the Compressive Sensing (CS) theory has ripped in the last recent years. Combined the proofed datasets of published literature and sensing matrix design theory of CS algorithm to optimal the sensitivity of multispectral camera by filter selection is proposed and verified. The more variation of filter vectors can be selected, the more accuracy of the spectral reconstruction results can be acquired with super resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuval Garini, Ian T. Young, George McNamara. “Spectral Imaging: Principles and Applications”, International Society for Analytical Cytology: Cytometry, Vol. 69(Part A), pp 735–747, 2006.

    Google Scholar 

  2. XIANG Li-bin, WANG Zhong-hou, LIU Xue-bin, YUAN Yan, JI Zhong-ying, LV Qun-bo, “Hyperspectral Imager of the Environment and Disaster Monitoring Small Satellite”, Remote Sensing Technology and Application, Vol. 24, pp 257–262, 2009.

    Google Scholar 

  3. McCorkel, J.; Thome, K.; Ong, L. “Vicarious Calibration of EO-1 Hyperion”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6(2), pp. 400–407, 2013.

    Google Scholar 

  4. WU Wen-min, LIAO Ning-fang, CHAI Bing-hua, “Study on all reflective imaging spectrometer based on Fresnel Double_mirror”, OPTICAL TECHNIQUE, Vol. 32, Chinese, pp 431–433, 2006.

    Google Scholar 

  5. A. S. Filler, “Apodization and Interpolation in Fourier Transform Spectroscopy”, Journal of the Optical Society of America, Vol. 54, pp 762–767, 1964.

    Google Scholar 

  6. D. A. Naylor and M. K. Tahic, “Apodizing functions for Fourier Transform Spectroscopy”, Journal of the Optical Society of America, Vol. 24, pp 3644–3648, 2007.

    Google Scholar 

  7. Burns, Peter D., Berns, Roy S. “Quantization in Multispectral Color Image Acquisition”, Color and Imaging Conference, Vol. 1999(4), pp 32–35, 1999.

    Google Scholar 

  8. Jon Y. Hardeberg. “Filter Selection for Multispectral Color Image Acquisition”, Journal of Imaging Science and Technology. Vol. 48(2), pp 177–182, 2004.

    Google Scholar 

  9. LI Suixian, LIAO Ning, fang, SUN Yunan, “Optimal Sensitivity of Multispectral imaging system based on PCA”, Opto-Electronic Engineering, Vol. 33(3), pp 127–132, 2006.

    Google Scholar 

  10. Eva M. Valero, Juan L. Nieves1, Sérgio M. C. Nascimento, Kinjiro Amano, David H. Foster, “Recovering spectral data from natural scenes with an RGB digital camera and colored filters” Color Research & Application, Vol. 32(5), pp 352–360, October 2007.

    Google Scholar 

  11. Juan L Nieves, Eva M Valero, Javier Hernández-Andrés, Javier Romero, “Recovering fluorescent spectra with an RGB digital camera and color filters using different matrix factorizations”, Applied Optics, Vol. 46(19), pp 4144–4154, August 2007.

    Google Scholar 

  12. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, Vol. 52, no. 2, pp. 489–509, Feb 2006.

    Google Scholar 

  13. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, Vol. 52, no. 4, pp. 1289–1306, 2006.

    Google Scholar 

  14. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Transactions on Signal Processing Magazine, Vol. 25, no. 2, pp. 83–91, March 2008.

    Google Scholar 

  15. D.J. Brady, M.E. Gehm, “Compressive imaging spectrometers using coded apertures”. Proceedings of the SPIE - The International Society for Optical Engineering, Vol. 6246(1), pp 62460A–62460A-9, 2006.

    Google Scholar 

  16. M. E. Gehm, R. John, D. J. Brady, R. M. Willett; T. J. Schulz, “Single-shot Compressive Spectral Imaging with a Dual-disperser Architecture”. Optics Express, Vol. 15(21), pp 14013–14027, 2007.

    Google Scholar 

  17. ZHOU Jiankang, CHEN Xinhua, JI Yiqun, SHEN Weimin, “Research on Principle and Experimentation of High-Resolution Optical Compressive Spectral Imaging”, Acta Optica Sinica, Vol. 34(1), pp 107–112, 2014.

    Google Scholar 

  18. Laura Galvis, Henry Arguello, Gonzalo R. Arce, “Coded aperture design in mismatched compressive spectral imaging”, Applied Optics, Vol. 54(33), pp 9875–9882, 2015.

    Google Scholar 

  19. Lu-Lu, Qian; Qun-Bo, Lü,Min, Huang; Li-Bin, Xiang. “Piecewise spectrally band-pass for compressive coded aperture spectral imaging”, Chinese Physics B, Vol. 24(8), pp 80703–80708, 2015.

    Google Scholar 

  20. N. Diaz; H. Rueda; H. Arguello. “High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering”, IngeniIería e InvestiIgaciIón Vol. 35(3):pp 53–60, 2015.

    Google Scholar 

  21. Arce, G.R.; Brady, D.J.; Carin, L.; Arguello, H.;Kittle, D.S., “Compressive Coded Aperture Spectral Imaging: An Introduction”, IEEE Journal of Selected Signal Processing Magazine, Vol. 31(1), pp 105–115, 2014.

    Google Scholar 

  22. Yuan, X.; Tsai, T.; Zhu, R.; Llull, P.; Brady, D.; Carin, L. “Compressive Hyperspectral Imaging with Side Information” ,IEEE Journal of Selected Topics in Signal Processing, Vol. 9(6), pp 964–976, 2015.

    Google Scholar 

  23. Imai, Francisco H, “ Comparative Study of Metrics for Spectral Match Quality”, Proc. CGIV: The First European Conference on Colour Graphics, Imaging and Vision, pp. 492–496, 2002.

    Google Scholar 

  24. Johannes Brauers, Nils Schulte, and Til Aach, “Multispectral Filter-Wheel Cameras: Geometric Distortion Model and Compensation Algorithms”, IEEE transactions on image processing, Vol. 17, no. 12, December 2008.

    Google Scholar 

  25. Jon Y. Hardeberg, “Acquisition and Reproduction of Color Image: Colorimetric and Multispectral Approaches”, ISBN: 1–58112-135-0, http://www.dissertation.com, USA, 2001

  26. P. L. Vora and H. J. Trussell, “Measure of goodness of a set of color-scanning filters”, J. Opt. Soc. Am. A, Vol. 10, No. 7, pp. 1499–1503, 1993.

    Google Scholar 

  27. Du-Yong Ng, Jan P. Allebach, “A subspace matching color filter design methodology for a multispectral imaging system”, IEEE Transactions on Image Processing, Vol. 15(9),pp. 2631–2643, October 2006.

    Google Scholar 

  28. David Connah, Stephen Westland, and Mitchell G.A. Thomson, “A Computational Model for the Design of a Multispectral Imaging System”, IS&T/SID Ninth Color Imaging Conference: Color Science & Engineering: systems, Vol. 2001, pp. 130–134, 2001.

    Google Scholar 

  29. S. Quan, N. Ohta and N. Katoh, “Optimization of camera spectral sensitivities”, Proc. of the IS&T and SID 8th Color Imaging Conference, IS&T, Springfield, VA, pp. 273–277, 2000.

    Google Scholar 

  30. Muhammad Safdar, Ming Ronnier Luo, Yuzhao Wang, Xiaoyu Liu, “Multispectral Imaging System based on Tuneable LEDs”, Conference: Multispectral Color Science (MCS) Symposium, At Tokyo, Japan, Vol. 2015, May 19–22, 2015.

    Google Scholar 

  31. Raju Shrestha, Jon Yngve Hardeberg, “Multispectral Imaging System based on Tuneable LEDs”, 23rd Color and Imaging Conference Final Program and Proceedings, Society for Imaging Science and Technology, pp. 36–40, 2015.

    Google Scholar 

  32. SX Quan, N Ohta, RS Berns, XY Jiang, N Katoh, “Unified measure of goodness and optimal design of spectral sensitivity functions”, Journal of Imaging Science, Vol. 46(6), pp. 485–497, 2002.

    Google Scholar 

  33. E Candes, Y Plan, “Near-ideal model selection by 1 minimization”, Annals of Statistics, Vol. 37(5A), pp. 2145–2177, 2008.

    Google Scholar 

  34. R. M. Willett, R.F. Marcia, J.M. Nichols, “Compressed sensing for Practical optical imaging systems: a tutorial”, Optical Engineering, Vol. 50(7), pp. 586–598, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suixian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, S., Zhang, L. (2017). Optimal Sensitivity Design of Multispectral Camera Via Broadband Absorption Filters Based on Compressed Sensing. In: Urbach, H., Zhang, G. (eds) 3rd International Symposium of Space Optical Instruments and Applications. Springer Proceedings in Physics, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-49184-4_33

Download citation

Publish with us

Policies and ethics