Skip to main content

Almost Perfect Privacy for Additive Gaussian Privacy Filters

  • Conference paper
  • First Online:
Information Theoretic Security (ICITS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10015))

Included in the following conference series:

Abstract

We study the maximal mutual information about a random variable Y (representing non-private information) displayed through an additive Gaussian channel when guaranteeing that only \(\varepsilon \) bits of information is leaked about a random variable X (representing private information) that is correlated with Y. Denoting this quantity by \(g_\varepsilon (X,Y)\), we show that for perfect privacy, i.e., \(\varepsilon =0\), one has \(g_0(X,Y)=0\) for any pair of absolutely continuous random variables (XY) and then derive a second-order approximation for \(g_\varepsilon (X,Y)\) for small \(\varepsilon \). This approximation is shown to be related to the strong data processing inequality for mutual information under suitable conditions on the joint distribution \(P_{XY}\). Next, motivated by an operational interpretation of data privacy, we formulate the privacy-utility tradeoff in the same setup using estimation-theoretic quantities and obtain explicit bounds for this tradeoff when \(\varepsilon \) is sufficiently small using the approximation formula derived for \(g_\varepsilon (X,Y)\).

S. Asoodeh—This work was supported in part by NSERC of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will see in the next section that this holds in the estimation-theoretic formulation of privacy, i.e., the Gaussian case is the worst case when the privacy filter is an additive Gaussian channel and the utility and privacy are measured as \({\mathsf {mmse}}(Y|Z_\gamma )\) and \({\mathsf {mmse}}(X|Z_\gamma )\), respectively.

References

  1. Asoodeh, S., Alajaji, F., Linder, T.: Notes on information-theoretic privacy. In: Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and Computing, pp. 1272–1278, September 2014

    Google Scholar 

  2. Asoodeh, S., Diaz, M., Alajaji, F., Linder, T.: Information extraction under privacy constraints. Information 7(1) (2016). http://www.mdpi.com/2078-2489/7/1/15

    Google Scholar 

  3. Calmon, F.P., Varia, M., Médard, M., Christiansen, M.M., Duffy, K.R., Tessaro, S.: Bounds on inference. In: Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pp. 567–574, October 2013

    Google Scholar 

  4. Asoodeh, S., Alajaji, F., Linder, T.: Privacy-aware MMSE estimation. In: Proceedings of the IEEE International Symposium on Information (ISIT), July 2016. arXiv:1511.02381v3

  5. Makhdoumi, A., Fawaz, N.: Privacy-utility tradeoff under statistical uncertainty. In: Proceedings of the 51st Allerton Conference on Communication, Control, and Computing, pp. 1627–1634, October 2013

    Google Scholar 

  6. Calmon, F.P., Makhdoumi, A., Médard, M.: Fundamental limits of perfect privacy. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 1796–1800 (2015)

    Google Scholar 

  7. Berger, T., Yeung, R.: Multiterminal source encoding with encoder breakdown. IEEE Trans. Inf. Theor. 35(2), 237–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reed, I.S.: Information theory and privacy in data banks. In: Proceedings of the National Computer Conference and Exposition, ser. AFIPS 1973, pp. 581–587. ACM, New York (1973)

    Google Scholar 

  9. Yamamoto, H.: A source coding problem for sources with additional outputs to keep secret from the receiver or wiretappers. IEEE Trans. Inf. Theor. 29(6), 918–923 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sankar, L., Rajagopalan, S., Poor, H.: Utility-privacy tradeoffs in databases: an information-theoretic approach. IEEE Trans. Inf. Forensics Secur. 8(6), 838–852 (2013)

    Article  Google Scholar 

  11. Asoodeh, S., Alajaji, F., Linder, T.: On maximal correlation, mutual information and data privacy. In: Proceedings of the IEEE 14th Canadian Workshop on Information Theory (CWIT), pp. 27–31, June 2015

    Google Scholar 

  12. Rebollo-Monedero, D., Forne, J., Domingo-Ferrer, J.: From t-closeness-like privacy to postrandomization via information theory. IEEE Trans. Knowl. Data Eng. 22(11), 1623–1636 (2010)

    Article  Google Scholar 

  13. Calmon, F.P.: Information-theoretic metrics for security and privacy. Ph.D. dissertation, MIT, September 2015

    Google Scholar 

  14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anantharam, V., Gohari, A., Kamath, S., Nair, C.: On maximal correlation, hypercontractivity, the data processing inequality studied by Erkip, Cover. Preprint, arXiv:1304.6133v1 (2014)

  16. Guo, D., Shamai, S., Verdú, S.: Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Inf. Theor. 51(4), 1261–1282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, D., Wu, Y., Shamai, S., Verdú, S.: Estimation in Gaussian noise: properties of the minimum mean-square error. IEEE Trans. Inf. Theor. 57(4), 2371–2385 (2011)

    Article  MathSciNet  Google Scholar 

  18. Rényi, A.: On measures of dependence. Acta Mathe. Acad. Scient. Hung. 10(3), 441–451 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gebelein, H.: Das statistische problem der korrelation als variations- und eigenwert-problem und sein zusammenhang mit der ausgleichungsrechnung. Zeitschrift f ur angew. Math. und Mech. 21, 364–379 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sarmanov, O.: The maximum correlation coefficient (nonsymmetric case). Dokl. Akad. Nauk SSSR 120(4), 715–718 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  22. Polyanskiy, Y., Wu, Y.: Dissipation of information in channels with input constraints. IEEE Trans. Inf. Theor. 62(1), 35–55 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wu, Y., Verdú, S.: Functional properties of minimum mean-square error and mutual information. IEEE Trans. Inf. Theor. 58(3), 1289–1301 (2012)

    Article  MathSciNet  Google Scholar 

  24. Prelov, V.V.: Capacity of communication channels with almost Gaussian noise. Teor. Veroyatnost. i Primenen. 33(3), 433–452 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Asoodeh .

Editor information

Editors and Affiliations

Appendices

A Connection Between Mutual Information and Non-Gaussianness

For any pair of random variables (UV) with \(I(U; V){<\infty }\), let \(P_{V|U}(\cdot |u)\) be the conditional density of V given \(U=u\). Then, we have

$$\begin{aligned} I(U; V)= & {} {\mathbb {E}}_{UV}\left[ \log \frac{P_{V|U}(V|U)}{P_V(V)}\right] \nonumber \\= & {} {\mathbb {E}}_{UV}\left[ \log \frac{P_{V|U}(V|U)}{P_{V_{\mathsf {G}}|U_{\mathsf {G}}}(V|U)}\right] +{\mathbb {E}}_{UV}\left[ \log \frac{P_{V_{\mathsf {G}}|U_{\mathsf {G}}}(V|U)}{P_{V_{\mathsf {G}}}(V)}\right] -{\mathbb {E}}_{UV}\left[ \log \frac{P_{V}(V)}{P_{V_{\mathsf {G}}}(V)}\right] \nonumber \\= & {} I(U_{{\mathsf {G}}}; V_{\mathsf {G}}) +D(V|U)-D(V), \end{aligned}$$
(37)

where \((U_{\mathsf {G}}, V_{\mathsf {G}})\) is a pair of Gaussian random variable having the same means, variances and correlation coefficient as (UV), and \(P_{V_{\mathsf {G}}|U_{\mathsf {G}}}(\cdot |u)\) is the conditional density of \(V_{\mathsf {G}}\) given \(U_{\mathsf {G}}=u\), and the quantity D(V|U) is defined in (34). Replacing U and V with X and \(Z_\gamma \), respectively, the decomposition (37) allows us to conclude that

$$\begin{aligned} I(X; Z_\gamma )=I(X_{{\mathsf {G}}}; \sqrt{\gamma }Y_{{\mathsf {G}}}+N_{{\mathsf {G}}})+D(Z_{\gamma }|X)-D(Z_{\gamma }), \end{aligned}$$

and therefore, if \(Y=Y_{\mathsf {G}}\) is Gaussian, we have

$$\begin{aligned} I(X; Z_\gamma )=I(X_{{\mathsf {G}}}; Z_\gamma )+D(Z_\gamma |X)\ge I(X_{{\mathsf {G}}}; Z_\gamma ), \end{aligned}$$

from which we conclude that when Y is Gaussian then \(I(X; Z_\gamma )\le \varepsilon \) implies that \(I(X_{\mathsf {G}}; Z_\gamma )\le \varepsilon \) and hence \(g_\varepsilon (X, Y_{\mathsf {G}})\le g_\varepsilon (X_{\mathsf {G}}, Y_{\mathsf {G}})\).

B Completion of the Proof of Theorem 4

Lemma 1

For Gaussian \(X_{\mathsf {G}}\) and absolutely continuous Y with unit variance, we have

$$\begin{aligned} D(Z_\gamma |X_{\mathsf {G}})\le \frac{\gamma }{2}\left[ {\mathsf {mmse}}(Y_{\mathsf {G}}|X_{\mathsf {G}})-{\mathsf {mmse}}(Y|X_{\mathsf {G}})\right] +o(\gamma ). \end{aligned}$$

Proof

Let E be an auxiliary random variable defined as

$$\begin{aligned} E= {\left\{ \begin{array}{ll} 1,~~~|Y|\le L\\ 0,~~~\text {otherwise}, \end{array}\right. } \end{aligned}$$

for some real number \(M>0\). Note that

$$\begin{aligned} D(Z_\gamma |X_{\mathsf {G}}=x)&=h(\sqrt{\gamma }Y_{\mathsf {G}}+N_{\mathsf {G}}|X_{\mathsf {G}}=x)-h(Z_\gamma |X_{\mathsf {G}}=x) \nonumber \\&\le h(\sqrt{\gamma }Y_{\mathsf {G}}+N_{\mathsf {G}}|X_{\mathsf {G}}=x)-h(Z_\gamma |X_{\mathsf {G}}=x, E)\nonumber \\&= \frac{1}{2}\log (2\pi e(1+\gamma {\mathsf {var}}(Y_{\mathsf {G}}|X_{\mathsf {G}}=x)))\nonumber \\&\quad -\Pr (E=1)h(Z_\gamma |X_{\mathsf {G}}=x, E=1)-\Pr (E=0)h(Z_\gamma |X_{\mathsf {G}}=x, E=0) \nonumber \\&\mathop {\le }\limits ^{(a)} \frac{1}{2}\log (2\pi e(1+\gamma {\mathsf {var}}(Y_{\mathsf {G}}|X_{\mathsf {G}}=x))-\Pr (E=0)h(N_{\mathsf {G}})\nonumber \\&\quad -\Pr (E=1)h(Z_\gamma |X_{\mathsf {G}}=x, E=1) \end{aligned}$$
(38)

where (a) follows from the fact that \(h(Z_\gamma |X_{\mathsf {G}}=x, E=0)\ge h(N_{\mathsf {G}})\).

Prelov [24] showed that for any random variable Y such that

$$\begin{aligned} {\mathbb {E}}[|Y|^{2+\alpha }]\le K{<\infty }, \end{aligned}$$
(39)

for some \(\alpha >0\), then

$$\begin{aligned} h(\sqrt{\gamma }Y+N_{\mathsf {G}})=\frac{1}{2}\log (2\pi e)+\frac{{\mathsf {var}}(Y)}{2}(\gamma +o(\gamma )), \end{aligned}$$
(40)

where \(o(\gamma )\) term depends only on K. Since \(Y|\{E=1\}\) satisfies (39), we can use (40) to evaluate \(h(Z_\gamma |X_{\mathsf {G}}=x, E=1)\) in (38) which yields

$$\begin{aligned} D(Z_\gamma |X_{\mathsf {G}}=x)\le & {} \frac{1}{2}\log (2\pi e(1+\gamma {\mathsf {var}}(Y_{\mathsf {G}}|X_{\mathsf {G}}=x))-\Pr (E=0)\frac{1}{2}\log (2\pi e)\nonumber \\&-\Pr (E=1)\left[ \frac{1}{2}\log (2\pi e)+\frac{{\mathsf {var}}(Y|X_{\mathsf {G}}=x, E=1)}{2}(\gamma +o(\gamma ))\right] \nonumber \\= & {} \frac{1}{2}\log (1+\gamma {\mathsf {var}}(Y_{\mathsf {G}}|X_{\mathsf {G}}=x))\nonumber \\&-\frac{{\mathsf {var}}(Y|X_{\mathsf {G}}=x, E=1)}{2}(\gamma +o(\gamma ))\Pr (E=1). \end{aligned}$$
(41)

Note that since \({\mathsf {var}}(Y){<\infty }\) and \(X_{\mathsf {G}}\) has a positive density, \({\mathsf {var}}(Y|X_{\mathsf {G}}=x){<\infty }\) for almost all x (except for x in a set of zero Lebesgue measure). Hence, we can choose L sufficiently large such that for any given \(\delta >0\),

$$\begin{aligned} \Pr (E=1)\ge 1-\delta , \end{aligned}$$

and

$$\begin{aligned} {\mathsf {var}}(Y|X_{\mathsf {G}}=x, E=1)\ge {\mathsf {var}}(Y|X_{\mathsf {G}}=x)-\delta . \end{aligned}$$

Therefore, invoking the inequality \(\log (1+u)\le u\) for \(u>0\), we can write

$$\begin{aligned} D(Z_\gamma |X_{\mathsf {G}}=x)\le \frac{\gamma }{2}\left[ {\mathsf {var}}(Y_{\mathsf {G}}|X_{\mathsf {G}}=x)-({\mathsf {var}}(Y|X_{\mathsf {G}}=x)-\delta )(1-\delta )\right] +o(\gamma ), \end{aligned}$$

from which and the fact the \(\delta \) is arbitrarily small the result follows. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Asoodeh, S., Alajaji, F., Linder, T. (2016). Almost Perfect Privacy for Additive Gaussian Privacy Filters. In: Nascimento, A., Barreto, P. (eds) Information Theoretic Security. ICITS 2016. Lecture Notes in Computer Science(), vol 10015. Springer, Cham. https://doi.org/10.1007/978-3-319-49175-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49175-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49174-5

  • Online ISBN: 978-3-319-49175-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics