Advertisement

Indoor Air Quality in Healing Environments: Impacts of Physical, Chemical, and Biological Environmental Factors on Users

  • Stefano CapolongoEmail author
  • Gaetano Settimo
Chapter
Part of the SpringerBriefs in Public Health book series (BRIEFSPUBLIC)

Abstract

Starting from the definition of confined spaces, the paper examines the indoor air quality in healing environments that must be promoters of health and well-being for all the users. In fact, as several authors stated, the main factors of air pollution are bacteria, substances used for therapeutic and diagnostic purposes, odors generated by cleaning and maintenance products, disinfectants, heating systems, ventilation and air-conditioning, building materials, furniture and finishing, as well as the outdoor environment. Moreover, hospitals incorporate a variety of risks that can be divided into physical risks that determinate alteration of well-being or thermal discomfort of users, caused by inadequate microclimatic parameters; chemical risks caused by the contaminations of toxic, harmful, or carcinogenic substances; and biological risks caused by contamination of qualitatively and/or quantitatively inadequate microorganisms. According to the different risks that may occur in a healthcare facility, the paper examines also the role of management and risk assessment on these issues, analyzing the people involved and responsibilities that hospital managers must fulfill to ensure health quality and safety.

Keywords

Indoor air quality Healthcare facilities Physical risks Biological risks Chemical risks 

References

  1. Agodi A, Auxilia F, Barchitta M, Brusaferro S, D’Alessandro D, Grillo OC, et al. Trends, risk factors and outcomes of healthcare-associated infections within the Italian network SPIN-UTI. J Hosp Infect. 2013;84(1):52–8. doi: 10.1016/j.jhin.2013.02.012.CrossRefPubMedGoogle Scholar
  2. ANSI/ASHRAE Standards. Ventilation of health care facilities. Atlanta: ANSI. No.170; 2008.Google Scholar
  3. Astley P, Capolongo S, Gola M, Tartaglia A. Operative and design adaptability in healthcare facilities. Technè. 2015; 9:162–170. doi: 10.13128/Techne-16118.
  4. Aurigemma C, Tuti F, De Giusti M, Moscato U, Ricciardi G, Boccia A. Model for microbiological surveillance of operating rooms: analysis of the efficacy of total mesophilic load and air particle counts. Igiene e sanità pubblica. 2010;66(2):193–213.PubMedGoogle Scholar
  5. Berrube A, Cavereau D, Mosqueron L. La qualite de l’air interior dans les Hopitaux. Air Pur. 2011;80:31–8.Google Scholar
  6. Bessonneau V, Mosqueron L, Berrubé A, Mukensturm G, Buffet-Bataillon S, Gangneux JP, Thomas O. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PLoS ONE. 2013;8(2):e55535. doi: 10.1371/journal.pone.0055535.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cabo Verde S, Almeida SM, Matos J, Guerreiro D, Meneses M, Faria T, Botelho D, Santos M, Viegas C. Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol. 2015; 166(7):557–563. doi: 10.1016/j.resmic.2015.03.004.
  8. Capolongo S. Social aspects and well-being for improving healing processes’ effectiveness. Ann Ist Super Sanità. 2016;52(1):11–4. doi: 10.4415/ANN_16_01_05.PubMedGoogle Scholar
  9. Capolongo S, Bottero MC, Lettieri E, Buffoli M, Bellagarda A, Birocchi M, et al. Healthcare sustainability challenge. In: Capolongo S, Bottero MC, Buffoli M, Lettieri E editors. Improving sustainability during hospital design and operation: a multidisciplinary evaluation tool. Springer, Cham; 2015. 1–10. doi: 10.1007/978-3-319-14036-0_1.
  10. Capolongo S, Gola M, di Noia M, Nickolova M, Nachiero D, Rebecchi A, et al. Social sustainability in healthcare facilities: a rating tool for analyzing and improving social aspects in environments of care. Ann Ist Super Sanità. 2016;52(1):15–23. doi: 10.4415/ANN_16_01_06.PubMedGoogle Scholar
  11. Comitato Tecnico Italiano. UNI 10339: Impianti aeraulici a fini di benessere. Milano: Comitato tecnico Italiano; 1995.Google Scholar
  12. D’Alessandro D, Cerquetani F, Deriu MG, Montagna MT, Mura I, Napoli C, et al. Evaluation of fungal contamination in operating rooms using a dusting cloth pad: comparison among different sampling methods. Am J Infect Control. 2013;41(7):658–60. doi: 10.1016/j.ajic.2012.10.006.CrossRefPubMedGoogle Scholar
  13. D’Alessandro D, Agodi A, Auxilia F, Brusaferro S, Calligaris L, Ferrante M, et al. Prevention of healthcare associated infections: medical and nursing students’ knowledge in Italy. Nurse Educ Today. 2014;34(2):191–5. doi: 10.1016/j.nedt.2013.05.005.CrossRefPubMedGoogle Scholar
  14. D’Alessandro D, Fabiani M, Cerquetani F, Orsi GB. Trend of Legionella colonization in hospital water supply. Ann Ig. 2015;27(2):460–6. doi: 10.7416/ai.2015.2032.PubMedGoogle Scholar
  15. D’Alessandro D, Tedesco P, Rebecchi A, Capolongo S. Water use and water saving in Italian hospitals. A preliminary investigation. Ann Ist Super Sanità. 2016; 52(1):56–62. doi: 10.4415/ANN_16_01_11.
  16. de Antonellis S, Intini M, Joppolo CM, Leone C. Design optimization of heat wheels for energy recovery in HVAC systems. Energies. 2014;7(11):7348–67. doi: 10.3390/en7117348.CrossRefGoogle Scholar
  17. Gray WA, Vittori G, Guenther R, Vernon W, Dilwali K. Leading the way: innovative sustainable design guidelines for operating healthy healthcare buildings. In: ISIAQ 10th international conference on healthy buildings 2012. Curran Associates, Red Hook 2012; 1:1212–17.Google Scholar
  18. ISPESL, AIRP. Manuale operativo di radioprotezione nelle attività a scopo medico. ISPESL, Roma; 2003.Google Scholar
  19. ISPESL. Linee Guida standard di sicurezza e igiene del lavoro nel pronto soccorso. ISPESL, Roma; 2005a.Google Scholar
  20. ISPESL. Linee Guida standard di sicurezza e igiene del lavoro nel blocco parto. ISPESL, Roma; 2005b.Google Scholar
  21. ISPESL. Linee Guida standard di sicurezza e igiene del lavoro nel reparto operatorio. ISPESL, Roma; 2009.Google Scholar
  22. Italia. Decreto Legislativo 9 Aprile, No. 81. Attuazione dell’articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro. Gazzetta Ufficiale. No. 101. Roma, 30 Aprile 2008.Google Scholar
  23. Italia. Decreto Legislativo 13 Agosto, No. 155. Attuazione della direttiva 2008/50/CE relativa alla qualità dell’aria ambiente e per un’aria più pulita in Europa. No. 216, Gazzetta Ufficiale Supplemento Ordinario, No. 217. 15 Settembre 2010.Google Scholar
  24. Leung M, Chan AHS. Control and management of hospital indoor air quality. Med Sci Monit. 2006; 12(3):SR17–23.Google Scholar
  25. Manzoli L, Flacco ME, Ferrante M, Vecchia CL, Siliquini R, Ricciardi W et al. Cohort study of electronic cigarette use: Effectiveness and safety at 24 months. Tobacco Control. 2016. doi: 10.1136/tobaccocontrol-2015-052822.
  26. Meneghini A. I fattori di inquinamento indoor in ambito sanitario. Oltre 500 milioni di euro a causa del prolungamento delle degenze causate da infezioni ospedaliere. Tutto sanità. 2007. http://www.tuttosanita.it/inclusioni/tsb/Tsb59/pag42.htm.
  27. Ministero dell’Ambiente. Relazione della Commissione nazionale per l’inquinamento degli ambienti confinati. Ministero dell’Ambiente, Roma; 1991.Google Scholar
  28. Montagna MT, De Giglio O, Napoli C, Cannova L, Cristina ML, Deriu MG, et al. Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study. Epidemiol Prev. 2014; 38(6Suppl 2):62–5.Google Scholar
  29. Montagna MT, Ricci ML, Napoli C, Tato’ D, Scaturro M, Barbuti G, et al. Legionella pneumophila serogroup 5 infection in the presence of multiple environmental contamination. The importance of a bacteriological diagnosis. Italian. J Publ Health. 2007;4:71–4.Google Scholar
  30. Nyhan M, Sobolevsky S, Kang C, Robinson P, Corti A, Szell M, et al. Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model. Atmos Environ. 2016;140:352–63. doi: 10.1016/j.atmosenv.2016.06.018.CrossRefGoogle Scholar
  31. Santarsiero A, Musmeci L, Fuselli S. per il Gruppo di Studio Nazionale sull’Inquinamento Indoor (Eds). Workshop. La qualità dell’aria indoor: attuale situazione nazionale e comunitaria. L’esperienza del Gruppo di Studio Nazionale Inquinamento Indoor. Roma: Istituto Superiore di Sanità; 2014.Google Scholar
  32. Settimo G. Qualità dell’aria negli ambienti confinati: aspetti tecnici e legislativi. Workshop. La qualità dell’aria indoor: attuale situazione nazionale e comunitaria. In: Rapporto ISTISAN 15/04. 2015. http://www.iss.it/binary/publ/cont/15_4_web.pdf.
  33. Settimo G, D’Alessandro D. European community guidelines and standards in indoor air quality: what proposals for Italy. Epidemiol Prev. 2014;38(6):36–41.PubMedGoogle Scholar
  34. Settimo G, Musmeci L, Marzocca A, Cecinato A, Cattani G, Fuselli S. per il Gruppo di Studio Nazionale sull’Inquinamento Indoor. Strategie di monitoraggio del materiale particellare PM10 e PM2,5 in ambiente indoor. Caratterizzazione dei microinquinanti organici e inorganici. Roma: Istituto Superiore di Sanità; 2016. Rapporti ISTISAN 16/16. http://www.iss.it/binary/publ/cont/16_16_web.pdf.
  35. Signorelli C, Riccò M. The health-environment interaction in Italy. Igiene e sanità pubblica. 2012;68(2):374–80.PubMedGoogle Scholar
  36. WHO. Indoor air pollutants exposure and health effects report on a WHO meeting. EURO reports and studies. WHO, Copenhagen; 1982. vol. 78.Google Scholar
  37. WHO. Indoor air quality research. EURO reports and studies. WHO, Copenhagen; 1984. vol. 103.Google Scholar
  38. WHO. Guidelines for indoor air quality: selected pollutants. WHO, Copenhagen; 2010.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Architecture, Built Environment and Construction EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Department of Environment and HealthIstituto Superiore di SanitàRomeItaly

Personalised recommendations