Skip to main content

Meromictic Pit Lakes: Case Studies from Spain, Germany and Canada and General Aspects of Management and Modelling

  • Chapter
  • First Online:
Ecology of Meromictic Lakes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 228))

Abstract

Pit lakes are artificial lakes, which form in voids of opencasts. Geochemically different inflows and steep lake basins make pit lakes more prone to meromixis than natural lakes. Mining, environmental legislation and often the poor water quality , mainly due to acidification , require detailed planning and management of pit lakes.

Three cases from different regions are presented. Pit lake Cueva de la Mora has been comprehensively investigated for physical limnology, water chemistry, sediment biogeochemistry and microbial ecology. The connection of the lake with former underground mine galleries and shafts had a decisive impact on the physical and chemical stratification of the waterbody (mixolimnion, chemocline and four distinct monimolimnetic layers). Relatively high primary production in the mixolimnion fuelled intense cycling of iron, other heavy metals and sulphur. In Lake Goitsche (Germany), the disappearance and recovery of meromixis was documented in detail by profile measurements. Groundwater caused the meromixis, which was destroyed by an exceptional flood in 2002. The recovery of the monimolimnion was supported by the lake basin geometry and the protective effect of the thermal summer stratification in 2003.

In Island Copper Mine Pit Lake (Canada), meromixis was created intentionally by capping introduced sea water with brackish water. The monimolimnion was projected for the treatment and deposition of harmful mine waste. The hydrology of the lake was almost completely controlled. Primary production in the mixolimnion was manipulated by year-round fertilization for metal removal via adsorption to algal biomass and subsequent sedimentation. Sulphate reduction in the monimolimnion and burial of metal sulphides in the sediment were boosted successfully.

Finally three management options are discussed: (1) sustaining meromixis, (2) deposition of mine waste and (3) controlled elimination of meromixis. Predictive modelling forms an essential tool for planning and managing meromictic pit lakes . An overview on modelled meromictic lakes is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14:305–312

    Article  CAS  PubMed  Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling; Simulation of flow and advective transport. Academic, San Diego, CA

    Google Scholar 

  • Balistrieri LS, Tempel RN, Stillings LL, Shevenell LA (2006) Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA. Appl Geochem 21:1184–1203

    Article  CAS  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Rev Mineral Geochem 40:351–403

    Article  CAS  Google Scholar 

  • Boehrer B (2012) Double-diffusive convection in lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs, encyclopedia of earth sciences series. Springer, Dordrecht, pp 223–224

    Google Scholar 

  • Boehrer B, Dietz S, von Rohden C, Kiwel U, Jöhnk KD, Naujoks S, Ilmberger J, Lessmann D (2009) Double-diffusive deep water circulation in an iron-meromictic lake. Geochem Geophys Geosyst 10:Q06006. doi:10.1029/2009GC002389

    Article  CAS  Google Scholar 

  • Boehrer B, Heidenreich H, Schimmele M, Schultze M (1998) Numerical prognosis for salinity profiles of future lakes in the opencast mine Merseburg-Ost. Int J Salt Lake Res 7:235–260

    Google Scholar 

  • Boehrer B, Kiwel U, Rahn K, Schultze M (2014) Chemocline erosion and its conservation by freshwater introduction to meromictic salt lakes. Limnologica 44:81–89

    Article  CAS  Google Scholar 

  • Boehrer B, Yusta I, Magin K, Sanchez-Espana J (2016) Quantifying, assessing and removing the extreme gas load from meromictic Guadiana pit lake, southwest Spain. Sci Total Environ 563–564:468–477

    Article  PubMed  CAS  Google Scholar 

  • Boehrer B, Schultze M, Liefold S, Behlau G, Rahn K, Frimel S, Kiwel U, Kuehn B, Brookland I, Büttner O (2003) Stratification of mining Lake Goitsche during flooding with river water. In: Tailings and mine waste ’03. Swets & Zeitlinger, Lisse, pp 223–231

    Google Scholar 

  • Boehrer B, Schultze M, Ockenfeld K, Geller W (2005) Path of the 2002 Mulde flood through Lake Goitsche, Germany. Verh Int Verein Limnol 29:369–372

    Google Scholar 

  • Brassard P, Rosa F, Mudroch A (1996) Disposal of acid drainage generating mine tailings in lakes and man-made reservoirs. Environ Technol 17:1059–1069

    Article  CAS  Google Scholar 

  • Cameron D, Willett M, Hammer L (2006) Distribution of organic carbon in the Berkeley Pit Lake, Butte, Montana. Mine Water Environ 25:93–99

    Article  CAS  Google Scholar 

  • Castendyk DN, Eary LE (2009) The nature and global distribution of pit lakes. In: Castendyk DN, Eary LE (eds) Mine Pit Lakes: Characteristics, predictive modeling, and sustainability. Society for Mining, Metallurgy, and Exploration, Littleton, pp 1–11

    Google Scholar 

  • Castendyk DN, Webster-Brown JG (2007a) Sensitivity analyses in pit lake prediction, Martha Mine, New Zealand 1: relationship between turnover and input water density. Chem Geol 244:42–55

    Article  CAS  Google Scholar 

  • Castendyk DN, Webster-Brown JG (2007b) Sensitivity analyses in pit lake prediction, Martha Mine, New Zealand 2: geochemistry, water-rock reactions, and surface adsorption. Chem Geol 244:56–73

    Article  CAS  Google Scholar 

  • Castendyk DN, Webster-Brown JG (2010) Effects of mine expansion on geochemical predictions of pit lake water quality: an example from Martha Mine, Waihi, New Zealand. J Geol Geophys 53:143–151

    Article  CAS  Google Scholar 

  • Castendyk DN, Balistrieri LS, Gammons C, Tucci N (2015b) Modeling and management of pit lake water chemistry 2: case studies. Appl Geochem 57:289–307

    Article  CAS  Google Scholar 

  • Castendyk DN, Eary LE, Balistrieri LS (2015a) Modeling and management of pit lake water chemistry 1: theory. Appl Geochem 57:267–288

    Article  CAS  Google Scholar 

  • Colarusso LA, Chermak JA, Priscu JC, Miller FK (2003) Modeling pit lake water column stability using Ce-Qual-W2. In: Tailings and mine waste ’03. Swets & Zeitlinger, Lisse, pp 213–222

    Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) Restoration and management of lakes and reservoirs, 3rd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Crusius J, Dunbar D, McNee JJ (2002) Predictions of a pit-lake water column properties using a coupled mixing and geochemical speciation model. Trans Soc Min Metall Explor 312:49–56

    CAS  Google Scholar 

  • Dagenais PJ, Poling GW (1997) An investigation into the geochemical history of a waste rock dump and its effect on water quality of the flooded open pit at Island Copper Mine, Port Hardy, British Columbia. In: Proceedings of the 4th international conference on acid rock drainage, Vancouver, BC, 31 May–6 June, 1997. Mine Environment Neutral Drainage Program, Ottawa, pp 1709–1725

    Google Scholar 

  • Degermendzhy A, Zadereev E, Rogozin D, Prokopkin I, Barkhatov Y, Tolomeev A, Khromechek E, Janse J, Mooij W, Gulati RD (2010) Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat Ecol 44:619–632

    Article  CAS  Google Scholar 

  • Denimal S, Bertrand C, Mudry J, Paquette Y, Hochart M, Steinmann M (2005) Evolution of the aqueous geochemistry of mine pit lakes—Blanzy-Montceau-les-Mines coal basin (Massif Central, France): origin of sulfate contents; effects of stratification on water quality. Appl Geochem 20:825–839

    Article  CAS  Google Scholar 

  • Dietz S, Lessmann D, Boehrer B (2012) Contribution of solutes to density stratification in a meromictic lake (Waldsee/Germany). Mine Water Environ 31:129–137

    Article  CAS  Google Scholar 

  • Diez-Ercilla M (2015) Estudio Hidrogeoquímico del Lago Minero Cueva de la Mora (IBP, Huelva)—Controles sobre la concentración de metales y modelo de estratificación. Dissertation, Universidad del Pais Vasco, Bilbao

    Google Scholar 

  • Diez-Ercilla M, Sánchez-España J, Yusta I, Wendt-Potthoff K, Koschorreck M (2014) Formation of biogenic sulfides in the water column of an acidic pit lake: biogeochemical controls and effects on trace metal dynamics. Biogeochemistry 121(3):519–536

    Article  CAS  Google Scholar 

  • Dreher N (2007) Entwicklung des pelagischen Nahrungsnetzes in einem neu entstandenen Tagebausee. Dissertation, University Potsdam

    Google Scholar 

  • Duffek A, Langner C (2002) P-retention in an acidic mining lake under the influence of flooding with river water. Verh Int Verein Limnol 28:1717–1720

    CAS  Google Scholar 

  • Dunbar DS (2013) Modeling of pit lakes. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 186–224

    Google Scholar 

  • Falagán C, Sánchez-España J, Johnson B (2014) New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol Ecol 87:231–243

    Article  PubMed  CAS  Google Scholar 

  • Fast AW, Tyler PA (1981) The re-establishment of meromixis in Hemlock Lake, Michigan, after artificial destratification. Int Rev Gesamten Hydrobiol 66:665–674

    Article  CAS  Google Scholar 

  • Fedorov KN (1988) Layer thicknesses and effective diffusivities in “diffusive” thermohaline convection in the ocean. In: Nihoul JCL, Jamart BM (eds) Small-scale turbulence and mixing in the ocean. Elsevier, Amsterdam, pp 471–479

    Google Scholar 

  • Fisher TSR (2002) Limnology of meromictic Island Copper Mine pit lake. Dissertation, University of British Columbia

    Google Scholar 

  • Fisher TSR, Lawrence GA (2000) Observations at the upper halocline of the Island Copper pit lake. In: Lawrence GA, Pieters R, Yonemitsu N (eds) Fifth international symposium on stratified flow, Vancouver, BC, 10-13 July, 2000. Department of Civil Engineering of University of British Columbia, Vancouver, pp 413–418

    Google Scholar 

  • Fisher TSR, Lawrence GA (2006) Treatment of acid rock drainage in a meromictic mine pit lake. J Environ Eng 132:515–526

    Article  CAS  Google Scholar 

  • Flite O (2006) Onset and persistence of biogenic meromixis in a filling pit lake—a limnological perspective. Dissertation, Clemson University

    Google Scholar 

  • Fraser CJD, Martin AJ, Dunbar D, Bourne J, Sjöblom AM, Josline CD, Lindström P (2012) Predictive pit lake modelling for Aitik Mine, Northern Sweden. In: Price WA, Hogan C, Tremblay G (eds) 9th international conference on acid rock drainage (ICARD 2012), Ottawa, Canada, 20-26 May 2012, volume 1. Golder Associates, Kanata, pp 789–799

    Google Scholar 

  • Gammons CH, Tucci NJ (2013) The Berkeley Pit Lake, Butte, Montana. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 362–376

    Google Scholar 

  • Gammons CH, Harris LN, Castro JM, Cott PA, Hanna BW (2009) Creating lakes from open pit mines: processes and considerations—with emphasis on northern environments. Can Tech Rep Fish Aquat Sci 2826

    Google Scholar 

  • Geller W, Schultze M, Wisotzky F (2013) Remediation and management of acidified pit lakes and outflowing waters. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 225–264

    Chapter  Google Scholar 

  • Grimaldi R (2009) Climatologic characteristics. In: Castendyk DN, Eary LE (eds) Mine Pit Lakes: characteristics, predictive modeling and sustainability. Society for Mining, Metallurgy, and Exploration, Littleton, pp 19–31

    Google Scholar 

  • Hamblin PF, Stevens CL, Lawrence GA (1999) Simulation of vertical transport in mining pit lake. J Hydraul Eng 125:1029–1038

    Article  Google Scholar 

  • Henny C, Triyanto (2011) Effects of climate change on the water quality of pit lakes in Banka Island, Indonesia. In: Haryani GS, Chrismada T, Fakhrudin M, Rosilla L, Sutapa I, Subehi L, Toruan RL, Maghfiroh M, Lukman (eds) Proceedings of the national symposium on ecohydrology, March 24, 2011, Jakarta, Indonesia. UNESCO, LIPI, APCE, Jakarta, pp 151–164

    Google Scholar 

  • Herrell M, Vandenberg J, Faithful J (2015) Designing meromictic pit lakes as a mine closure mitigation strategy in northern Canada. In: Brown A, Bucknam C, Burgess J et al. (eds) Agreeing on solutions for more sustainable mine water management—Proceedings of the 10th ICARD & IMWA annual conference.—electronic document (paper 91); Santiago, Chile (GECAMIN), http://www.imwa.info/imwa-meetings/proceedings/293-proceedings-2015.html

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451

    Article  CAS  Google Scholar 

  • Hongve D (2003) Chemical stratigraphy of recent sediments from a depth gradient in a meromictic lake, Nordbytjernet, SE Norway, in relation to variable external loading and sedimentary fluxes. J Paleolimnol 30:75–93

    Article  Google Scholar 

  • Hrdinka T (2007) Typology and potential utilization of anthropogenic lakes in mining pits in the Czech Republic. Limnol Rev 7:47–53

    Google Scholar 

  • Imberger J, Patterson JC (1981) A dynamic reservoir simulation model: DYRESM 5. In: Fischer H (ed) Transport models for inland and coastal waters. Academic, New York, pp 310–361

    Chapter  Google Scholar 

  • Jacobs P, Förstner U (2001) Managing contaminated sediments. IV. Subaqueous storage and capping of dredged material. J Soil Sediment 1:205–212

    Article  CAS  Google Scholar 

  • Jeschke C, Falagán C, Knöller K, Schultze M, Koschorreck M (2013) No nitrification in lakes below pH 3. Environ Sci Technol 47:14018–14023

    Article  CAS  PubMed  Google Scholar 

  • Jöhnk K (2001) 1D hydrodynamische Modelle in der Limnophysik: Turbulenz—Meromixis—Sauerstoff. Limnophysics report 1, Institute of Limnophysics, Konstanz

    Google Scholar 

  • Jones H, McCullough CD (2011) Regulator guidance and legislation relevant to pit lakes. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 137–152

    Google Scholar 

  • Jørgensen SE (2010) A review of recent developments in lake modelling. Ecol Model 221:689–692

    Article  Google Scholar 

  • Kelly CA, Amaral JA, Turner MA, Rudd JWM, Schindler DW, Stainton MP (1995) Disruption of sulfur cycling and acid neutralization in lakes at low pH. Biogeochemistry 28:115–130

    Article  CAS  Google Scholar 

  • Kelley DE, Fernando HJS, Gargett AE, Tanny J, Özsoy E (2003) The diffusive regime of double-diffusive convection. Prog Oceanogr 56:461–481

    Article  Google Scholar 

  • Klapper H, Schultze M (1995) Geogenically acidified mining lakes—living conditions and possibilities of restoration. Int Rev Gesamten Hydrobiol 80:639–653

    Article  CAS  Google Scholar 

  • Klemm W, Greif A, Broeckaert JAC, Siemens V, Junge FW, van der Veen A, Schultze M, Duffek A (2005) A study on arsenic and the heavy metals in the Mulde River system. Acta Hydrochim Hydrobiol 33:475–491

    Article  CAS  Google Scholar 

  • Kling GW (1987) Seasonal mixing and catastrophic degassing in tropical lakes, Cameroon, West Africa. Science 237:1022–1024

    Article  CAS  PubMed  Google Scholar 

  • Kling GW, Evans WC, Tanyleke G, Kusakabe M, Ohba T, Yoshida Y, Hell JV (2005) Degassing lakes Nyos and Monoun: defusing certain disaster. Proc Natl Acad Sci USA 102:14185–14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koschorreck M, Tittel J (2007) Natural alkalinity generation in neutral lakes affected by acid mine drainage. J Environ Qual 36:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Kosolapov DB, Rogozin DY, Gladchenko IA, Kopylov AI, EE Z (2003) Microbial sulfate reduction in a brackish meromictic steppe lake. Aquat Ecol 37:215–226

    Article  CAS  Google Scholar 

  • Kumar RN, McCullough CD, Lund MA (2013) Pit lakes in Australia. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 342–362

    Google Scholar 

  • Lu M (2004) Pit lakes from sulphide ore mining, geochemical characterization before treatment, after liming and sewage sludge treatment—cases studies at Rävlidmyran and Udden, Sweden. Dissertation, Luleå University of Technology

    Google Scholar 

  • Lyons WB, Doyle GA, Petersen RC, Swanson EE (1994) The limnology of future pit lakes in Nevada: the importance of shape. In: Tailings and mine waste ’94. Balkema, Rotterdam, pp 245–248

    Google Scholar 

  • Marcus JJ (1997) Closing BHP’s island copper mine. Eng Min J 1997:28–32

    Google Scholar 

  • Meier J, Piva A, Fortin D (2012) Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol Ecol 79:69–84

    Article  CAS  PubMed  Google Scholar 

  • Miller GC, Lyons WB, Davis A (1996) Understanding the water quality of pit lakes. Environ Sci Technol 30:118A–123A

    Article  CAS  PubMed  Google Scholar 

  • Molenda T (2014) Impact of saline mine water: development of a meromictic reservoir in Poland. Mine Water Environ 33:327–334

    Article  Google Scholar 

  • Mooij WM, Trolle D, Jeppesen E et al. (2010) Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat Ecol 44:633–667

    Article  Google Scholar 

  • Moreira S, Boehrer B, Schultze M, Dietz S, Samper J (2011) Modeling geochemically caused permanent stratification in Lake Waldsee (Germany). Aquat Geochem 17:265–280

    Article  CAS  Google Scholar 

  • Moreira S, Schultze M, Rahn K, Boehrer B (2016) A practical approach to lake water density from electrical conductivity and temperature. Hydrol Earth Syst Sci 20:2975–2986

    Article  Google Scholar 

  • Morin KA, Hutt NM, Horne IA (1995) Prediction of future water chemistry from Island Copper Mine’s on-land dumps. In: British Columbia Technical and Research Committee on Reclamation (ed) Proceedings of the 19th annual British Columbia mine reclamation symposium, Port Hardy, BC. BiTech Publishers, Richmond, p 224-233

    Google Scholar 

  • Muggli DL, Pelletier CA, Poling GW, Schwamberger E (2000) Injection ARD plume behaviour in a pit lake utilizing in situ dye studies. In: Proceedings of the 5th international conference on acid rock drainage, Denver, CO, 21–24 May, 2000. Society for Mining, Metallurgy, and Exploration, Littleton, p 305-318

    Google Scholar 

  • Murphy WM (1997) Are pit lakes susceptible to limnic eruptions. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 543–547

    Google Scholar 

  • Nixdorf E, Boehrer B (2015) Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake. Hydrol Earth Syst Sci 19:4505–4515

    Article  Google Scholar 

  • Oldham CE, Salmon SU, Hipsey MR, Ivey GN (2009) Modeling pit lake water quality: Coupling of lake stratification dynamics, lake ecology, aqueous geochemistry, and sediment diagenesis. In: Castendyk DN, Eary LE (eds) Mine Pit Lakes: Characteristics, predictive modeling, and sustainability. Society for Mining, Metallurgy, and Exploration, Littleton, p 127-136

    Google Scholar 

  • Pankow KL, Moore JR, Hale JM, Koper KD, Kubacki T, Whidden KM, McCarter MK (2013) Massive landslide at Utah copper mine generates wealth of geophysical data. GSA Today 24(1):4–9

    Google Scholar 

  • Park BT, Wangerud KW, Fundingsland SD, Adzic ME, Lewis MN (2006) In situ chemical and biological treatment leading to successful water discharge from Anchor Hill Pit Lake, Gilt Edge Mine superfund site, South Dakota, U.S.A. In: Barnhisel RI (ed) Proceedings of 7th international conference on acid rock drainage (ICARD), ASMR, Lexington, pp 1065–1069

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (2000) User's guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey. Water Resources Investigations Report 99-4259, Denver, CO, USA

    Google Scholar 

  • Pelletier CA, Wen ME, Poling GW (2009) Flooding pit lakes with surface water. In: Castendyk DN, Eary LE (eds) Mine pit lakes. Society for Mining Metallurgy and Exploration, Littleton, pp 187–202

    Google Scholar 

  • Pieters R, Lawrence GA (2014) Physical processes and meromixis in pit lakes subject to ice cover. Can J Civ Eng 41:69–578

    Article  CAS  Google Scholar 

  • Pieters R, Coedy W, Ashley KI, Lawrence GA (2015) Artificial circulation of a mine pit lake. Can J Civ Eng 42:33–43

    Article  Google Scholar 

  • Poling GW, Ellis DV, Murray JW, Parsons TR, Pelletier CA (2002) Underwater tailing placement at Island Copper Mine—a success story. Society for Mining, Metallurgy, and Exploration, Littleton

    Google Scholar 

  • Poling GW, Pelletier CA, Muggli D, Wen M, Gerits J, Hanks C, Black K (2003) Field studies of semi-passive biogeochemical treatment of acid rock drainage at the Island Copper Mine pit lake. In: Farrell T, Taylor G (eds) Proceedings of the 6th international conference on acid rock drainage, 14–17 July, 2003, Cairns, QL. The Australian Institute of Mining and Metallurgy, Carlton Victoria, pp 549–558

    Google Scholar 

  • Prakash S, Vandenberg JA, Buchak EM (2015) Sediment diagenesis module for CE-QUAL-W2 Part 2: numerical formulation. Environ Model Assess 20:249–258

    Article  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  CAS  Google Scholar 

  • Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int J Rock Mech Min Sci 44:308–320

    Article  Google Scholar 

  • Rücker J, Fyson A, Deneke R, Packroff G (1999) Meromiktische Seen mit saurem Mixolimnion—eine Besonderheit der Lausitzer Bergbaufolgelandschaft. In: Tagungsbericht DGL 1998. Eigenverlag der DGL, Tutzing, pp 239–243

    Google Scholar 

  • Sahm K, MacGregor BJ, Jørgensen BB, Stahl DA (1999) Sulfate reduction and vertical distribution of sulfate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ Microbiol 1:65–74

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-España J, López-Pamo E, Diez M, Santofimia E (2009) Physico-chemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian Pyrite Belt. Mine Water Environ 28:15–19

    Article  CAS  Google Scholar 

  • Sánchez-España J, Yusta I, Diez-Ercilla M (2011) Schwertmannite and hydro-basaluminite: A re-evaluation of their solubility and control on the iron and aluminum concentration in acidic pit lakes. Appl Geochem 26:1752–1774

    Article  CAS  Google Scholar 

  • Sánchez-España J, Yusta I, López GA (2012a) Schwertmannite to jarosite conversion in the water column of an acidic mine pit lake. Mineral Mag 76:2659–2682

    Article  CAS  Google Scholar 

  • Sánchez-España J, Diez-Ercilla M, Falagán C, Yusta I (2012b) An experimental and field study on P, Si, As, Cr, V and Se binding to Fe- and Al-hydroxysulfates under oxic and anoxic conditions in acidic pit lakes: chemical vs. microbial controls. Mineral Mag 75:2319

    Google Scholar 

  • Sánchez-España J, Diez M, Santofimia E (2013) Mine pit lakes of the Iberian Pyrite Belt: Some basic limnological, hydrogeochemical and microbiological considerations. In: Geller W, Schultze M, Kleinmann B, Wolkersdorfen C (eds) Acidic pit lakes. Springer, Heidelberg, pp 315–342

    Google Scholar 

  • Sánchez-España J, Boehrer B, Yusta I (2014a) Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction. Environ Sci Technol 48:4273–4281

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-España J, Diez-Ercilla M, Pérez Cerdán F, Yusta I, Boyce AJ (2014b) Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J Hydrol 511:494–508

    Article  CAS  Google Scholar 

  • Santofimia E, López-Pamo E, Reyes J (2012) Changes in stratification and iron redox cycle of an acidic pit lake in relation with climatic factors and physical processes. J Geochem Explor 116-117:40–50

    Article  CAS  Google Scholar 

  • Schmid M, Lorke A, Dinkel C, Tanyileke G, Wüest A (2004) Double-diffusive convection in Lake Nyos, Cameroon. Deep-Sea Res Part I 51:1097–1111

    Article  CAS  Google Scholar 

  • Schmid M, Halbwachs M, Wüest A (2006) Simulation of CO2 concentrations, temperature and stratification in Lake Nyos for different degassing scenarios. Geochem Geophys Geosyst 7(6):Q06019. doi:10.1029/2005GC001164

    Article  CAS  Google Scholar 

  • Schultze M (2012) Filling and remediation of pit lakes in former open cast lignite mines. Dissertation, Technical University Braunschweig

    Google Scholar 

  • Schultze M, Boehrer B, Geller W (2013a) Morphology, age, and development of pit lakes. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 11–17

    Chapter  Google Scholar 

  • Schultze M, Boehrer B, Kuehn B, Büttner O (2002) Neutralisation of acidic mining lakes with river water. Verh Int Ver Limnol 28:936–939

    Google Scholar 

  • Schultze M, Hemm M, Geller W, Benthaus F-C (2013b) Pit lakes in Germany: Hydrography, water chemistry, and management. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 265–291

    Google Scholar 

  • Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier W (1998) Handbook of technologies for avoidance and remediation of acid mine drainage. The National Mine Land Reclamation Centre, West Virginia University, Morgantown

    Google Scholar 

  • Solski A, Jedrczak A (1991) Meromixis in acidotrophic reservoirs of "Anthropogenic Lake District". Pol Arch Hydrobiol 38:327–346

    CAS  Google Scholar 

  • Spiteri C, Van Cappellen P, Regnier P (2008) Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochim Cosmochim Acta 72(14):3431–3445

    Article  CAS  Google Scholar 

  • Stevens CL, Lawrence GA (1997) The effect of sub-aqueous disposal of mine tailings in standing waters. J Hydraul Res 35:147–159

    Article  Google Scholar 

  • Stevens C, Castendyk D, Fisher T (2002) The open-cast mine pit-lake: environmental fluid mechanics and long-term prediction. Mining 31:25–29

    Google Scholar 

  • Stottmeister U, Kuschk P, Wiessner A (2010) Full-scale bioremediation and long-term monitoring of a phenolic wastewater disposal lake. Pure Appl Chem 82:161–173

    Article  CAS  Google Scholar 

  • Swanson SM (2011) What type of lake do we want? Stakeholder engagement in planning for beneficial end uses of pit lakes. In: McCullough CD (ed) Mine pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 29–42

    Google Scholar 

  • Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D (2004) Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol 63:161–170

    Article  Google Scholar 

  • Trettin R, Gläser H-R, Schultze M, Strauch G (2007) Sulfur isotope studies to quantify sulfate components in water of flooded lignite open pits—Lake Goitsche, Germany. Appl Geochem 22:69–89

    Article  CAS  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Turner JS (1978) Double-diffusive intrusions into a density gradient. J Geophys Res 83:2887–2901

    Article  Google Scholar 

  • Ulbrich U, Brücher T, Fink AH, Leckebusch GC, Krüger A, Pinto JG (2003) The central European floods of August 2002: Part 1—rainfall periods and flood development. Weather 58:371–391

    Article  Google Scholar 

  • Vandenberg JA, Herrell M, Faithful JW, Snow AM, Lacrampe J, Bieber C, Dayyani S, Chisholm V (2015a) Multiple modeling approach for the aquatic effects assessment of a proposed northern diamond mine development. Mine Water Environ. doi:10.1007/s10230-015-0337-5

    Google Scholar 

  • Vandenberg J, McCullough C, Castendyk D (2015b) Key issues in mine closure planning related to pit lakes. In: Brown A, Bucknam C, Burgess J et al (eds) Agreeing on solutions for more sustainable mine water management—Proceedings of the 10th ICARD & IMWA Annual Conference.—electronic document (paper 156); Santiago, Chile (GECAMIN)

    Google Scholar 

  • Vandenberg JA, Prakash S, Buchak EM (2015c) Sediment diagenesis module for CE-QUAL-W2. Part 1: Conceptual formulation. Environ Model Assess 20:239–247

    Article  Google Scholar 

  • von Rohden C, Ilmberger J, Boehrer B (2009) Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment. J Hydrol 372:102–108

    Article  CAS  Google Scholar 

  • Wagner M, Lawrence J, Cederstav A (2013) Letter to Special Rapporteur on the rights of indigenous peoples at office of the high commissioner for human rights. http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CEQQFjAE&url=http%3A%2F%2Fearthjustice.org%2Fsites%2Fdefault%2Ffiles%2Ffiles%2FEJ-AIDA-SRRIP-Extractive-Industries.pdf&ei=MBu9U_DWL6bnygP0j4CABw&usg=AFQjCNH8tExYwG_-F8gv3I59JzuUtXRjLg&bvm=bv.70138588,d.bGE. Accessed 8 Jul 2014

  • Wendt-Potthoff K (2013) The role of iron cycling in the neutralization of extremely acidic waters. Habilitation thesis, University of Potsdam

    Google Scholar 

  • Wendt-Potthoff K, Koschorreck M, Diez Ercilla M, Sánchez España J (2012) Microbial activity and biogeochemical cycling in a nutrient-rich meromictic acid pit lake. Limnologica 42:175–188

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, San Diego

    Google Scholar 

  • Wilton MJ, Lawrence GA (1998) The evolution of the Island Copper Mine pit lake. In: British Columbia Technical and Research Committee on Reclamation (ed) Proceedings of the 22th annual british columbia mine reclamation symposium, Pentington, BC. BiTech Publishers, Richmond, pp 173–182

    Google Scholar 

  • Wyatt G, Miller F, Chermak J (2006) Innovative water treatment plant utilizing the South Mine Pit at the Copper Basin mining site in Tennessee, USA. In: Barnhisel RI (ed) 7th International Conference on Acid Rock Drainage (ICARD), 26–30 March 2006, St. Louis, USA. American Society of Mining and Reclamation (ASMR), Lexington, pp 2529–2539

    Google Scholar 

  • Younger P, Wolkersdorfer C (2004) Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23:S2–S80

    Article  Google Scholar 

  • Zaruba Q, Mencl V (1982) Landslides and their control. Elsevier, Amsterdam

    Google Scholar 

  • Zhang C, Zhu M, Zeng G, Yu Z, Cui F, Yang Z, Shen L (2016) Active capping technology: a new environmental remediation of contaminated sediment. Environ Sci Pollut Res 23:4370–4386

    Article  Google Scholar 

  • Zurek R (2006) Chemical properties of water in a flooded opencast sulphur mine. Aquat Ecol 40:135–153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Olaf Büttner (UFZ, Magdeburg, Germany) for his help in preparing the bathymetric maps of Lake Goitsche and Marc Wen (ERM, Vancouver, Canada) for checking the correctness of the compiled data on Island Copper Mine Pit Lake and the interpretations. We acknowledge the permission of Elsevier B.V. for reprint of Figs. 9.1, 9.2 (modified) and 9.3 from Sánchez-España et al. (2014b) and the permission of Springer B.V. to use the modified reprint of Fig. 9.5 from Diez-Ercilla et al. (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schultze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schultze, M., Boehrer, B., Wendt-Potthoff, K., Sánchez-España, J., Castendyk, D. (2017). Meromictic Pit Lakes: Case Studies from Spain, Germany and Canada and General Aspects of Management and Modelling. In: Gulati, R., Zadereev, E., Degermendzhi, A. (eds) Ecology of Meromictic Lakes. Ecological Studies, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-49143-1_9

Download citation

Publish with us

Policies and ethics