Skip to main content

Light-Emitting Electrochemical Cells

  • Chapter
  • First Online:
Luminescence in Electrochemistry
  • 1439 Accesses

Abstract

During the last years, research on light-emitting electrochemical cells (LECs) has literally exploded. Interest for this kind of devices is supported by the specificity of LECs, namely that these devices are among the simplest electroluminescent devices known today. In their simplest form, LECs have the structure of early organic light-emitting diodes (OLEDs), with one layer of organic materials containing mobile ions sandwiched between two metal electrodes. Generally speaking, LECs have several advantages over OLEDs, such as a single-layer configuration, operating at low voltages and allowing the use of air-stable electrodes. Devices can also be entirely solution-processed, what is largely favorable to the development of low-cost and large-area lighting applications in the future. In this chapter, the recent advances and the main remaining challenges concerning LECs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A.J.: Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995)

    Article  CAS  Google Scholar 

  2. (a) Meier, S.B., Tordera, D., Pertegás, A., Roldán-Carmona, C., Ortí, E., Bolink, H.J.: Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today 17(5), 217–223 (2014) (b) Su, H.-C., Cheng, C.-Y.: Recent advances in solid-state white light-emitting electrochemical cells. Isr. J. Chem. 54, 855–866 (2014)

    Google Scholar 

  3. Krasnov, A.N.: Electroluminescent displays: history and lessons learned. Displays 24, 73–79 (2003)

    Article  CAS  Google Scholar 

  4. van Reenen, S., Janssen, R.A.J., Kemerink, K.: Fundamental tradeoff between emission intensity and efficiency in light-emitting electrochemical cells. Adv. Mater. 25(20), 3066–3073 (2015)

    Google Scholar 

  5. (a) Gao, J., Yu, G., Heeger, A.J.: Polymer light-emitting electrochemical cells with frozen p-i-n junction. Appl. Phys. Lett. 71, 1293–1295 (1997) (b) Kervella, Y., Armand, M., Stephan, O.: Organic light-emitting electrochemical cells based on polyfluorene. Investigation of the failure modes. J. Electrochem. Soc. 148, H155–H160 (2001) (c) Edman, L., Moses, D., Heeger, A.J.: Influence of the anion on the kinetics and stability of a light-emitting electrochemical cell. Synth. Met. 138, 441–446 (2003) (d) Shin, J.H., Xiao, S., Edman, L.: Polymer light-emitting electrochemical cells: the formation and effects of doping-induced micro shorts. Adv. Funct. Mater. 16, 949–956 (2006) (e) Habrard, F., Ouisse, T., Stephan, O., Aubouy, L., Gerbier, P., Hirsch, L., Huby, N., Van der Lee, A.: Organic light-emitting diodes and organic light-emitting electrochemical cells based on silole-fluorene derivatives. Synth. Met. 156, 1262–1270 (2006)

    Google Scholar 

  6. (a) Baldo, M.A., O’Brien, D.F., Thompson, M.E., Forrest, S.R.: Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 66, 14422–14428 (1999) (b) Sun, Y., Giebink, N.C., Kanno, H., Ma, B., Thompson, M.E., Forrest, S.R.: Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006)

    Google Scholar 

  7. Adachi, C.: Third-generation organic electroluminescence materials. Jap. J. Appl. Phys. 53, 060101–1–060101-11 (2014)

    Google Scholar 

  8. Ishimatsu, R., Matsunami, S., Shizu, K., Adachi, C., Nakano, K., Imato, T.: Solvent effect on thermally activated delayed fluorescence by 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene. J. Phys. Chem. A 117, 5607–5612 (2013)

    Article  CAS  Google Scholar 

  9. Munar, A., Sandström, A., Tang, S., Edman, L.: Shedding light on the operation of polymer light-emitting electrochemical cells using impedance spectroscopy. Adv. Funct. Mater. 22(7), 1511–1517 (2012)

    Article  CAS  Google Scholar 

  10. Shukla, M., Brahme, N.: Analytical measurements for quantum efficiency of organic light emitting diodes. J. Int. Acad. Phys. Sci. 15(2), 231–238 (2011)

    Google Scholar 

  11. Sandström, A., Edman, L.: Towards high-throughput coating and printing of light-emitting electrochemical cells: a review and cost analysis of current and future methods. Energy Tech. 3(4), 329–339 (2015)

    Article  Google Scholar 

  12. (a) Benisty, H., Neve, H.D., Weisbuch, C.: Impact of planar microcavity effects on light extraction—Part I: basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612–1631 (1998) (b) Benisty, H., Neve, H.D., Weisbuch, C.: Impact of planar microcavity effects on light extraction—Part II: selected exact simulations and role of photon recycling. IEEE J. Quantum Electron. 34, 1632–1643 (1998)

    Google Scholar 

  13. (a) Zhen, C.-G., Dai, Y.-F., Zeng, W.-J., Ma, Z., Chen, Z.-K., Kieffer, J.: Achieving highly efficient fluorescent blue organic light-emitting diodes through optimizing molecular structures and device configuration. Adv. Funct. Mater. 21, 699–707 (2011) (b) Hofmann, S., Thomschke, M., Freitag, P., Furno, M., Lussem, B., Leo, K.: Top-emitting organic light-emitting diodes: influence of cavity design. Appl. Phys. Lett. 97, 253308-1–253308-3 (2010) (c) Furno, M., Meerheim, R., Hofmann, S., Lussem, B., Leo, K.: Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205-1–115205-21 (2012)

    Google Scholar 

  14. Chiang, C.-J., Kimyonok, A., Etherington, M.K., Griffiths, G.C., Jankus, V., Turksoy, F., Monkman, A.P.: Ultrahigh efficiency fluorescent single and bilayer organic light emitting diodes: the key role of triplet fusion. Adv. Funct. Mater. 23, 739–746 (2013)

    Article  CAS  Google Scholar 

  15. Bruckner, R., Lyssenko, V.G., Hofmann, S., Leo, K.: Lasing of tamm states in highly efficient organic devices based on small-molecule organic semiconductors. Faraday Disc 174, 183–201 (2014)

    CAS  Google Scholar 

  16. Brütting, W., Frischeisen, J., Schmidt, T.D., Scholz, B.J., Mayr, C.: Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys. Status Solidi A 210(1), 44–65 (2013)

    Article  Google Scholar 

  17. Kaihovirta, N., Longo, G., Gil-Escrig, L., Bolink, H.J., Edman, L.: Appl. Phys. Lett. 106, 103502-1–103502-4 (2015)

    Google Scholar 

  18. Saxena, K., Jain, V.K., Singh Mehtam, D.: A review on the light extraction techniques in organic electroluminescent devices. Opt. Mater. 32(1), 221–233 (2009)

    Article  CAS  Google Scholar 

  19. Peng, H.J., Ho, Y.L., Qiu, C.F., Wong, M., Kwok, H.S.: Coupling efficiency enhancement of organic light emitting devices with refractive microlens array on high index glass substrate. SID Symp. Dig. Tech. Pap. 35(1), 158–161 (2004)

    Article  CAS  Google Scholar 

  20. (a) Sun, Y., Forrest, S.R.: Enhanced light outcoupling of organic light-emitting devices using embedded low-index grids. Nature Photon 2(8), 483–487 (2008) (b) Koh, T.W., Choi, J.M., Lee, S., Yoo, S.: Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes. Adv. Mater. 22(16), 849–1853

    Google Scholar 

  21. Bi, Y.G., Feng, J., Li, Y.F., Jin, Y., Liu, Y.-F., Chen, Q.-D., Sun, H.-D.: Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure. Appl. Phys. Lett. 100, 053304–1–053304-4 (2012)

    Google Scholar 

  22. (a) Cho, S.-H., Song, Y.-W., Lee, J-g., Kim, Y.-H., Lee, J.H., Ha, J., Oh, J.-S., Lee, S.Y., Lee, S.Y., Hwang, K.H., Zang, D.S., Lee, Y.-H.: Weak-microcavity organic light-emitting diodes with improved light out-coupling. Opt. Express 16(17), 12632–12639 (2008) (b) Lin, C.-L., Cho, T.-Y., Chang, C.-H., Wu, C.-C.: Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Appl. Phys. Lett. 88:081114-1–081114-3 (2006)

    Google Scholar 

  23. (a) Do, Y.R., Kim, Y.C., Song, Y.W., Cho, C.-O., Jeon, H., Lee, Y.-J., Kim, S.H., Lee, Y.H.: Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals. Adv. Mater. 15(14), 1214–1218 (2003) (b) Xu, W., Li, Y.: The effect of anisotropy on light extraction of organic light-emitting diodes with photonic crystal structure. J. Nanomater. 969120 (2013)

    Google Scholar 

  24. Saxena, K., Mehta, D.S., Rai, V.K., Srivastava, R., Chauhan, G., Kamalasanan, M.N.: Implementation of anti-reflection coating to enhance light outcoupling in organic light-emitting devices. J. Lumin. 128(3), 525–530 (2008)

    Article  CAS  Google Scholar 

  25. Kaihovirta, N., Larsen, C., Edman, L.: Improving the performance of light-emitting electrochemical cells by optical design. ACS Appl. Mater. Interf. 6, 2940–2947 (2014)

    Article  CAS  Google Scholar 

  26. Cheng, C.-Y., Wang, C.-W., Cheng, J.-R., Chen, H.-F., Yeh, Y.-S., Su, H.-C., Chang, C.-H., Wong, K.-T.: Enhancing device efficiencies of solid-state white light-emitting electrochemical cells by employing waveguide coupling. J. Mater. Chem. C 3, 5665–5673 (2015)

    Article  CAS  Google Scholar 

  27. So, S.K., Choi, W.K., Leung, L.M., Neyts, K.: Interference effects in bilayer organic light-emitting diodes. Appl. Phys. Lett. 74(14), 1939–1941 (1999)

    Article  CAS  Google Scholar 

  28. (a) Jordan, R.H., Rothberg, L.J., Dodabalapur, A., Slusher, R.E.: Efficiency enhancement of microcavity organic light emitting diodes. Appl. Phys. Lett. 69, 1997–1999 (1996) (b) Fisher, T.A., Lidzey, D.G., Pate, M.A., Weaver, M.S., Whittaker, D.M., Skolnick, M.S., Bradley, D.D.C.: Electroluminescence from a conjugated polymer microcavity structure. Appl. Phys. Lett. 67, 1355–1357 (1995) (c) Tsutsui, T., Takada, N., Saito, S., Ogino, E.: Sharply directed emission in organic electroluminescent diodes with an optical‐microcavity structure. Appl. Phys. Lett. 65, 1868–1870 (1994)

    Google Scholar 

  29. Pei, Q., Yu, G., Zhang, C., Heeger, A.J.: Polymer light-emitting electrochemical cells: in situ formation of a light-emitting pn junction. J. Am. Chem. Soc. 118(16), 3922–3929 (1996)

    Article  CAS  Google Scholar 

  30. (a) Slinker, J.D., Rivnay, J., Moskowitz, J.S., Parker, J.B., Bernhard, S., Abruna, H.D., Malliaras, G.G.: Electroluminescent devices from ionic transition metal complexes. J. Mater. Chem. 17, 2976–2988 (2007) (b) Edman, L.: Bringing light to solid-state electrolytes: the polymer light-emitting electrochemical cell. Electrochim. Acta. 50, 3878–3885 (2005) (c) Marcilla, R., Mecerreyes, D., Winroth, G., Brovelli, S., del Mar Rodriguez Yebra, M., Cacialli, F.: Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. Appl. Phys. Lett. 96, 043308-1–043308-3 (2010) (d) Mindemark, J., Edman, L.: Illuminating the electrolyte in light-emitting electrochemical cells. J. Mater. Chem. C 4, 420–432 (2016)

    Google Scholar 

  31. Hu, Y., Gao, J.: Direct imaging and probing of the p-n junction in a planar polymer light-emitting electrochemical cell. J. Am. Chem. Soc. 133(7), 2227–2231 (2011)

    Article  CAS  Google Scholar 

  32. Costa, R.D., Pertegas, A., Orti, E., Bolink, H.J.: Improving the turn-on time of light-emitting electrochemical cells without sacrificing their stability. Chem. Mater. 22, 1288–1290 (2010)

    Article  CAS  Google Scholar 

  33. Tang, S., Mindemark, J., Moyses Graca Araujo, C., Brandell, D., Edman, L.: Identifying key properties of electrolytes for light-emitting electrochemical cells. Chem. Mater. 26(17), 5083–5088 (2014)

    Article  CAS  Google Scholar 

  34. Tordera, D., Lenes, M., Bolink, H.J.: Dynamic doping in bright and stable light-emitting electrochemical cells. J. Nanosci. Nanotechnol. 13(7), 5170–5174 (2013)

    Article  CAS  Google Scholar 

  35. Dumur, F., Bertin, D., Mayer, C.R., Guerlin, A., Wantz, G., Nasr, G., Dumas, E., Miomandre, F., Clavier, G., Gigmes, D.: Design of blue or yellow emitting devices controlled by the deposition process of a cationic iridium (III) complex. Synth. Met. 161, 1934–1939 (2011)

    Article  CAS  Google Scholar 

  36. (a) Scott, J.C., Kaufman, J.H., Brock, P.J., Di Pietro, R., Salem, J., Goitia, J.A.: Degradation and failure of MEH‐PPV light‐emitting diodes. J. Appl. Phys. 79, 2745–2751 (1996) (b) Cumpston, B.H., Jensen, K.F.: Photooxidation of electroluminescent polymers. Trends Polym. Sci. 4, 151–157 (1996) (c) Sutherland, D.G.J., Carlisle, J.A., Elliker, P., Fox, G., Hagler, T.W., Jimenez, I., Lee, H.W., Pakbaz, K., Terminello, L.J., Williams, S.C., Himpsel, F.J., Shuh, D.K., Tong, W.M., Jia, J.J., Callcott, T.A., Ederer, D.L.: Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy. Appl. Phys. Lett. 68, 2046–2048 (1996) (d) Cumpston, B.H., Parker, I.D., Jensen, K.F.: In situ characterization of the oxidative degradation of a polymeric light emitting device. J. Appl. Phys. 81, 3716–3720 (1997) (e) Parker, I.D., Cao, Y., Yang, C.Y.: Lifetime and degradation effects in polymer light-emitting diodes, J. Appl. Phys. 85, 2441–2447 (1999) (f) Bliznyuk, V.N., Carter, S.A., Scott, J.C., Klarner, G., Miller, R.D., Miller, D.C.: Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices, Macromolecules 32, 361–369 (1999) (g) Giebeler, C., Whitelegg, S.A., Lidzey, D.G., Lane, P.A., Bradley, D.D.C.: Device degradation of polymer light emitting diodes studied by electro-absorption measurements. Appl. Phys. Lett. 75, 2144–2146 (1999) (h) Silvestre, G.C.M., Johnson, M.T., Giraldo, A., Shannon, J.M.: Light degradation and voltage drift in polymer light-emitting diodes. Appl. Phys. Lett. 78, 1619–1621 (2001)

    Google Scholar 

  37. (a) Dane, J., Gao, J.: Imaging the degradation of polymer light-emitting devices. Appl. Phys. Lett. 85, 3905–3907 (2004) (b) Su, H.-C., Hsu, J.-H.: Improving the carrier balance of light-emitting electrochemical cells based on ionic transition metal complexes. Dalton Trans. 44(18), 8330–8345 (2015)

    Google Scholar 

  38. (a) Kalyuzhny, G., Buda, M., McNeill, J., Barbara, P., Bard, A.J.: Stability of thin-film solid-state electroluminescent devices based on tris(2,2′-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 125, 6272–6283 (2003) (b) Soltzberg, L.J., Slinker, J., Flores-Torres, S., Bernards, D., Malliaras, G.G., Abruna, H.D., Kim, J.S., Friend, R.H., Kaplan, M.D., Goldberg, V.: Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices. J. Am. Chem. Soc. 128, 7761–7764 (2006)

    Google Scholar 

  39. (a) Sivasubramaniam, V., Brodkorb, F., Hanning, S., Loebl, H.P., van Elsbergen, V., Boerner, H., Scherf, U., Kreyenschmidt, M.: Fluorine cleavage of the light blue heteroleptic triplet emitter FIrpic. J. Fluorine Chem. 130, 640–649 (2009) (b) Sivasubramaniam, V., Brodkorb, F., Hanning, S., Loebl, H.P., van Elsbergen, V., Boerner, H., Scherf, U., Kreyenschmidt, M.: Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent. Eur. J. Chem. 7(4), 836–845 (2009)

    Google Scholar 

  40. (a) Slinker, J.D., Gorodetsky, A.A., Lowry, M.S., Wang, J., Parker, S., Rohl, R., Bernhard, S., Malliaras, G.G.: Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. J. Am. Chem. Soc. 126, 2763–2767 (2004) (b) Graber, S., Doyle, K., Neuburger, M., Housecroft, C.E., Constable, E.C., Costa, R.D., Orti, E., Repetto, D., Bolink, H.J.: A supramolecularly-caged ionic iridium(III) complex yielding bright and very stable solid-state light-emitting electrochemical cells. J. Am. Chem. Soc. 130, 14944–14945 (2008) (c) Costa, R.D., Orti, E., Bolink, H.J., Graber, S., Housecroft, C.E., Constable, E.C.: Intramolecular π-stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells. J. Am. Chem. Soc. 132, 5978–5980 (2010) (d) Bolink, H.J., Coronado, E., Costa, R.D., Orti, E., Sessolo, M., Graber, S., Doyle, K., Neuburger, M., Housecroft, C.E., Constable, E.C.: Long-living light-emitting electrochemical cells – control through supramolecular interactions. Adv. Mater. 20, 3910–3913 (2008)

    Google Scholar 

  41. van Reenen, S., Akatsuka, T., Tordera, D., Kemerink, M., Bolink, H.J.: Universal transients in polymer and ionic transition metal complex light-emitting electrochemical cells. J. Am. Chem. Soc. 135, 886–891 (2013)

    Article  Google Scholar 

  42. (a) Walzer, K., Maennig, B., Pfeiffer, M., Leo, K.: Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107(4), 1233–1271 (2007) (b) Blom, P.W.M., Vissenberg, M.: Charge transport in poly(p-phenylenevinylene) light-emitting diodes. Mater. Sci. Eng. R-Rep. 27, 53–94 (2000)

    Google Scholar 

  43. (a) Rudmann, H., Shimada, S., Rubner, M.F.: Operational mechanism of light-emitting devices based on Ru(II) complexes: Evidence for electrochemical junction formation. J. Appl. Phys. 94(1), 115–122 (2003) (b) Wu, A., Yoo, D., Lee, J.K., Rubner, M.F.: Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex: 3. High efficiency devices via a layer-by-layer molecular-level blending approach. J. Am. Chem. Soc. 121(20), 4883–4891 (1999)

    Google Scholar 

  44. (a) Shao, Y., Gong, X., Heeger, A.J., Liu, M., Jen, A.K.Y.: Long-lifetime polymer light-emitting electrochemical cells fabricated with crosslinked hole-transport layers. Adv. Mater. 21(19), 1972 (2009) (b) Leger, J.M., Rodovsky, D.B., Bartholomew, G.P.: Self-assembled, chemically fixed homojunctions in semiconducting polymers. Adv. Mater. 18(23), 3130–3134 (2006)

    Google Scholar 

  45. (a) Garcia, A., Bakus Ii, R.C., Zalar, P., Hoven, C.V., Brzezinski, J.Z., Nguyen, T.-Q.: Controlling ion motion in polymer light-emitting diodes containing conjugated polyelectrolyte electron injection layers. J. Am. Chem. Soc. 133(8), 2492–2498 (2011) (b) Elbing, M., Garcia, A., Urban, S., Nguyen, T.-Q., Bazan, G.C.: In Situ conjugated polyelectrolyte formation. Macromolecules 41(23), 9146–9155 (2008) (c) Shavaleev, N.M., Scopelliti, R., Grätzel, M., Nazeeruddin, M.K., Pertegás, A., Roldán-Carmona, C., Tordera, D., Bolink, H.J.: Pulsed-current versus constant-voltage light-emitting electrochemical cells with trifluoromethyl-substituted cationic iridium(III) complexes. J. Mater. Chem. C 1(11), 2241–2248 (2013)

    Google Scholar 

  46. Manzanares, J.A., Reiss, H., Heeger, A.J.: Polymer light-emitting electrochemical cells: a theoretical study of junction formation under steady-state conditions. J. Phys. Chem. B 102(22), 4327–4336 (1998)

    Article  CAS  Google Scholar 

  47. Slinker, J.D., Defranco, J.A., Jaquith, M.J., Silveira, W.R., Zhong, Y.-W., Moran-Mirabal, J.M., Craighead, H.G., Abruna, H.D., Maron, J.A., Malliaras, G.G.: Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Mater. 6(11), 894–899 (2007)

    Article  CAS  Google Scholar 

  48. (a) Pei, Q., Heeger, A.J.: Nature Mater. 7, 167–167 (2008) (b) Malliaras, G.G., Slinker, J.D., DeFranco, J.A., Jaquith, M.J., Silveira, W.R., Zhong, Y.-W., Moran-Mirabal, J.M., Craighead, H.G., Abruña, H.D., Marohn, J.A.: Operating mechanism of light-emitting electrochemical cells. Nature Mater. 7, 168–168 (2008) (c) deMello, J.C.: Organic Electronics: What’s in a name? Nature Mater. 6, 796–797 (2007)

    Google Scholar 

  49. van Reenen, S., Janssen, R.A.J., Kemerink, M.: Doping dynamics in light-emitting electrochemical cells. Org. Electron. 12, 1746–1753 (2011)

    Article  Google Scholar 

  50. deMello, J.C., Tessler, N., Graham, S., Friend, F.: Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 57(20), 12951–12963 (1998)

    Article  CAS  Google Scholar 

  51. Matyba, P., Maturova, K., Kemerink, M., Robinson, N.D., Edman, L.: The dynamic organic p–n junction. Nat. Mater. 8, 672–676 (2009)

    Article  CAS  Google Scholar 

  52. Pingree, L.S.C., Rodovsky, D.B., Coffey, D.C., Bartholomew, G.P., Ginger, D.S.: Scanning kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs. J. Am. Chem. Soc. 129, 15903–15910 (2007)

    Article  CAS  Google Scholar 

  53. van Reenen, S., Matyba, P., Dzwilewski, A., Janssen, R.A.J., Edman, L., Kemerink, M.: A unifying model for the operation of light-emitting electrochemical cells. J. Am. Chem. Soc. 132(39), 13776–13781 (2010)

    Article  Google Scholar 

  54. Hohertz, D., Gao, J.: How electrode work function affects doping and electroluminescence of polymer light-emitting electrochemical cells. Adv. Mater. 20(17), 3298–3302 (2008)

    Article  CAS  Google Scholar 

  55. (a) Gao, J., Li, Y., Yu, G., Heeger, A.J.: Polymer light-emitting electrochemical cells with frozen junctions. J. Appl. Phys. 86(8), 4594–4599 (1999) (b) Edman, L.: Planar polymer light-emitting device with fast kinetics at a low voltage. J. Appl. Phys. 95(8), 4357–4361 (2004)

    Google Scholar 

  56. Zhang, Y., Gao, J.: Lifetime study of polymer light-emitting electrochemical cells. J. Appl. Phys. 100(8), 084501-1–084501-8 (2006)

    Google Scholar 

  57. Wantz, G., Gautier, B., Dumur, F., Phan, T.N.T., Gigmes, D., Hirsch, L., Gao, J.: Towards frozen organic PN junctions at room temperature using high-Tg polymeric electrolytes. Org. Electron. 13, 1859–1864 (2012)

    Article  CAS  Google Scholar 

  58. Yu, Z., Wang, M., Lei, G., Liu, J., Li, L., Pei, Q.: Stabilizing the dynamic p–i–n junction in polymer light-emitting electrochemical cells. J. Phys. Chem. Lett. 2, 367–372 (2011)

    Article  CAS  Google Scholar 

  59. (a) Shao, Y., Bazan, G.C., Heeger, A.J.: Long-lifetime polymer light-emitting electrochemical cells. Adv. Mater. 19, 365–370 (2007) (b) Shin, J.H., Xiao, S., Fransson, A., Edman, L. Polymer light-emitting electrochemical cells: frozen-junction operation of an “ionic liquid” device. Appl. Phys. Lett. 87, 043506-1–043506-3 (2005) (c) Yang, C., Sun, Q., Qiao, J., Li, Y.: Ionic liquid doped polymer light-emitting electrochemical cells. J. Phys. Chem. B 107:12981–12988 (2003)

    Google Scholar 

  60. Hu, Y., Tracy, C., Gao, J.: High-resolution imaging of electrochemical doping and dedoping processes in luminescent conjugated polymers. Appl. Phys. Lett. 88(12), 123507-1–123507-3 (2006)

    Google Scholar 

  61. Parker, S.T., Slinker, J.D., Lowry, M.S., Cox, M.P., Bernhard, S., Malliaras, G.G.: Improved turn-on times of iridium electroluminescent devices by use of ionic liquids. Chem. Mater. 17, 3187–3190 (2005)

    Article  CAS  Google Scholar 

  62. (a) Asadpoordarvish, A., Sandstrom, A., Tang, S., Granstrom, J., Edman, L.: Encapsulating light-emitting electrochemical cells for improved performance. Appl. Phys. Lett. 100(19), 193508-1–193508-4 (2012) (b) Fang, J.F., Matyba, P., Edman, L.: The design and realization of flexible, long-lived light-emitting electrochemical cells. Adv. Funct. Mater. 19, 2671–2676 (2009) (c) Tang, S., Edman, L.: Quest for an appropriate electrolyte for high-performance light-emitting electrochemical cells. J. Phys. Chem. Lett. 1, 2727–2732 (2010) (d) Sandstrom, A., Matyba, P., Edman, L.: Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency. Appl. Phys. Lett. 96, 053303-1–053303-3 (2010)

    Google Scholar 

  63. (a) Tordera, D., Meier, S., Lenes, M., Costa, R.D., Orti, E., Sarfert, W., Bolink, H.J.: Simple, fast, bright, and stable light sources. Adv. Mater. 24(7), 897–900 (2012) (b) Tordera, D., Delgado, M., Orti, E., Bolink, H.J., Frey, J., Nazeeruddin, M.K., Baranoff, E.: Stable green electroluminescence from an iridium tris-heteroleptic ionic complex. Chem. Mater. 24(10), 1896–1903 (2012)

    Google Scholar 

  64. (a) Costa, R.D., Orti, E., Bolink, H.J., Monti, F., Accorsi, G., Armaroli, N.: Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chem. Int. Ed. 51(33), 8178–8211 (2012) (b) Lenes, M., Garcia-Belmonte, G., Tordera, D., Pertegas, A., Bisquert, J., Bolink, H.J.: Operating modes of sandwiched light-emitting electrochemical cells. Adv. Funct. Mater. 21(9), 1581–1586 (2011) (c) Gautier, B., Gao, J.: A light emitting transistor based on a hybrid metal oxide-organic semiconductor lateral heterostructure. Appl. Phys. Lett. 101, 093302-1–093302-3 (2012) (d) Hoven, C.V., Wang, H.P., Elbing, M., Garner, L., Winkelhaus, D., Bazan, G.C.: Chemically fixed p–n heterojunctions for polymer electronics by means of covalent B–F bond formation. Nat. Mater. 9(3), 249–252 (2010) (e) Kosilkin, I.V., Martens, M.S., Murphy, M.P., Leger, J.M.: Polymerizable ionic liquids for fixed-junction polymer light-emitting electrochemical cells. Chem. Mater. 22(17), 4838–4840 (2010)

    Google Scholar 

  65. (a) Shin, J.H., Shin, J.H., Matyba, P., Robinson, N.D., Edman, L.: The influence of electrodes on the performance of light-emitting electrochemical cells. Electrochim. Acta 52(23), 6456–6462 (2007) (b) Leger, J.M., Carter, S.A., Ruhstaller, B.: Recombination profiles in poly 2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene light-emitting electrochemical cells. J. Appl. Phys. 98(12), 124907-1–124907-7 (2005)

    Google Scholar 

  66. Hernandez-Sosa, G., Eckstein, R., Tekoglu, S., Becker, T., Mathies, F., Lemmer, U., Mechau, N.: The role of the polymer solid electrolyte molecular weight in light-emitting electrochemical cells. Org. Electron. 14(9), 2223–2227 (2013) (b) Summers, M.A., Buratto, S.K., Edman, L.: Morphology and environment-dependent fluorescence in blends containing a phenylenevinylene-conjugated polymer. Thin Solid Films 515(23), 8412–8418 (2007)

    Google Scholar 

  67. Edman, L., Summers, M.A., Buratto, S.K., Heeger, A.J.: Polymer light-emitting electrochemical cells: doping, luminescence, and mobility. Phys. Rev. B 70(11), 115212-1–115212-7 (2004)

    Article  Google Scholar 

  68. Schaer, M., Nüesch, F., Berner, D., Leo, W., Zuppiroli, L.: Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 11(2), 116–121 (2001)

    Article  CAS  Google Scholar 

  69. Zhao, W., Liu, C.-Y., Wang, Q., White, J.M., Bard, A.J.: Effect of residual solvent on Ru(bpy)3(ClO4)2-based light-emitting electrochemical cells. Chem. Mater. 17, 6403–6406 (2005)

    Article  CAS  Google Scholar 

  70. (a) Buda, M., Kalyuzhny, G., Bard, A.J.: Thin-film solid-state electroluminescent devices based on tris(2,2′-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 124(21), 6090–6098 (2002) (b) Kalyuzhny, G., Buda, M., McNeil, J., Barbara, P., Bard, A.J.: Stability of thin-film solid-state electroluminescent devices based on tris(2,2′-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 125, 6272–6283 (2002)

    Google Scholar 

  71. (a) Sun, Q.J., Li, Y.F., Pei, Q.B.: Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3, 211–224 (2007) (b) Chung, S., Lee, J.-H., Jeong, J., Kim, J.J., Hong, Y.: Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. Appl. Phys. Lett. 94(25), 253302-1–253302-3 (2009)

    Google Scholar 

  72. Wågberg, T., Ralph Hania, P., Robinson, N.D., Shin, J.-H., Matyba, P., Edman, L.: On the limited operational lifetime of light-emitting electrochemical cells. Adv. Mater. 20(9), 1744–1749 (2008)

    Article  Google Scholar 

  73. (a) Alem, S., Wakim, S., Lu, J., Robertson, G., Ding, J., Tao, Y.: Degradation mechanism of benzodithiophene-based conjugated polymers when exposed to light in air. ACS Appl. Mater. Interf. 4(6), 2993–2998 (2012) (b) Chambon, S., Rivaton, A., Gardette, J.-L., Firon, M., Lutsen, L.: Aging of a donor conjugated polymer: photochemical studies of the degradation of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]. J. Polym. Sci. A Polym. Chem. 45(2), 317–331 (2007)

    Google Scholar 

  74. (a) Yu, G., Cao, T., Andersson, M., Gao, J., Heeger, A.J.: Polymer light-emitting electrochemical cells with frozen p-i-n junction at room temperature. Adv. Mat. 10, 385–388 (1998) (b) Edman, L., Pauchard, M., Moses, D., Heeger, A.J.: Planar polymer light-emitting device with fast kinetics at a low voltage. J. Appl. Phys. 95, 4357–4361 (2004)

    Google Scholar 

  75. Elliott, C.M., Pichot, F., Bloom, C.J., Rider, L.S.: Highly efficient solid-state electrochemically generated chemiluminescence from ester-substituted tris-bipyridine ruthenium(II)-based polymers. J. Am. Chem. Soc. 120(27), 6781–6784 (1998)

    Article  CAS  Google Scholar 

  76. Bernanose, A., Comte, M., Vouaux, P.: A new method of emission of light by certain organic compounds. J. Chim. Phys. 50, 64–68 (1953)

    CAS  Google Scholar 

  77. Rudmann, H., Shimada, S., Rubner, M.F.: Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex. 4. High-efficiency light-emitting devices based on derivatives of the tris(2,2′-bipyridyl)ruthenium(II) complex. J. Am. Chem. Soc. 124(17), 4918–4921 (2002)

    Article  CAS  Google Scholar 

  78. (a) Lowry, M.S., Bernhard, S.: Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem. Eur. J. 12(31), 7970–7977 (2006) (b) Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P.E., Forrest, S.R., Thompson, M.E.: Highly phosphorescent bis-cyclometalated iridium complexes:  synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 123(18), 4304–4312 (2001) (c) You, Y., Park, Y.: Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex:  facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J. Am. Chem. Soc. 127(36), 12438–12439 (2005)

    Google Scholar 

  79. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., von Zelewsky, A.: Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988)

    Article  CAS  Google Scholar 

  80. (a) Hu, T., He, L., Duan, L., Qiu, Y.: Solid-state light-emitting electrochemical cells based on ionic iridium(III) complexes. J. Mater. Chem. 22(10), 4206–4215 (2012) (b) Dumur, F., Bertin, D., Gigmes, D.: Iridium (III) complexes as promising emitters for solid-state light-emitting electrochemical cells (LECs). Int. J. Nanotechnol. 9, 377–395 (2011)

    Google Scholar 

  81. (a) Lepeltier, M., Dumur, F., Graff, B., Xiao, P., Gigmes, D., Lalevée, J., Mayer, C.R.: Triple heteroleptic tris-cyclometalated iridium (III) complexes with three different ligands: new example with 2-(2,4-difluorophenyl)pyridine-based complex. Helv. Chim. Acta. 97, 939–956 (2014) (b) Lepeltier, M., Dumur, F., Marrot, J., Contal, E., Bertin, D., Gigmes, D., Mayer, C.R.: Unprecedented combination of regioselective hydrodefluorination and ligand exchange reaction during the syntheses of tris-cyclometalated iridium (III) complexes. Dalton Trans. 42, 4479–4486 (2013)

    Google Scholar 

  82. (a) Zhuang, J., Li, W., Wu, W., Song, M., Su, W., Zhou, M., Cu, Z.: Homoleptic tris-cyclometalated iridium(III) complexes with phenylimidazole ligands for highly efficient sky-blue OLEDs. New J. Chem. 39(1), 246–253 (2015) (b) Tavasli, M., Moore, T.N., Zheng, Y., Bryce, M.R., Fox, M.A., Griffiths, G.C., Jankus, V., Al-Attarc, H.A., Monkman, A.P.: Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies. J. Mater. Chem. 22(13), 6419–6428 (2012) (c) Beeby, A., Bettington, S., Samuel, I.D.W., Wan, Z.: Tuning the emission of cyclometalated iridium complexes by simple ligand modification. J. Mater. Chem. 13(1), 80–83 (2003) (d) Kappaun, S., Slugovc, C., List, E.J.W.: Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials. Int. J. Mol. Sci. 9(8), 1527–1547 (2008)

    Google Scholar 

  83. (a) Dumur, F., Yuskevitch, Y., Wantz, G., Mayer, C.R., Bertin, D., Gigmes, D.: Light-emitting electrochemical cells based on a solution-processed multilayered device and an anionic iridium (III) complex. Synth. Met. 177, 100–104 (2013) (b) Chen, H.-F., Wu, C., Kuo, M.-C., Thompson, M.E., Wong, K.-T.: Anionic iridium complexes for solid state light-emitting electrochemical cells. J. Mater. Chem. 22, 9956–9561 (2012)

    Google Scholar 

  84. Nonoyama, M.: Benzo[h]quinolin-10-yl-N iridium(III) complexes. Bull. Chem. Soc. Jpn 47(3), 767–768 (1974)

    Article  CAS  Google Scholar 

  85. (a) Ulbricht, C., Beyer, B., Friebe, C., Winter, A., Schubert, U.S.: Recent developments in the application of phosphorescent iridium(III) complex systems. Adv. Mater. 21(44), 4418–4441 (2009) (b) Lo, K.K.-W., Hui, W.-K., Chung, C.-K., Tsang, K.H.-K., Ng, D.C.-M., Zhu, N., Cheung, K.-C.: Biological labelling reagents and probes derived from luminescent transition metal polypyridine complexes. Coord. Chem. Rev. 249(13), 1434–1450 (2005) (c) Mi, B.X., Wang, P.F., Gao, Z.Q., Lee, C.S., Lee, S.T., Hong, H.L., Chen, X.M., Wong, M.S., Xia, P.F., Cheah, K.W., Chen, C.H., Huang, W.: Strong luminescent iridium complexes with CˆN=N structure in ligands and their potential in efficient and thermally stable phosphorescent OLEDs. Adv. Mater. 21(3), 339–343 (2009) (d) Whittle, B., Everest, N.S., Howard, C., Ward, M.D.: Synthesis and electrochemical and spectroscopic properties of a series of binuclear and trinuclear ruthenium and palladium complexes based on a new bridging ligand containing terpyridyl and catechol binding sites. Inorg. Chem. 34(8), 2025–2032 (1995)

    Google Scholar 

  86. Denisov, S.A., Cudré, Y., Verwilst, P., Jonusauskas, G., Marín-Suarez, M., Fernandez-Sanchez, J.F., Baranoff, E., McClenaghan, N.D.: Direct observation of reversible electronic energy transfer involving an iridium center. Inorg. Chem. 53(5), 2677–2682 (2014)

    Article  CAS  Google Scholar 

  87. (a) Lowry, M.S., Goldsmith, J.I., Slinker, J.D., Pohl, R., Pascal, R.A., Jr, Malliaras, G.G., Bernhard, S.: Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17(23), 5712–5719 (2005) (b) Lowry, M.S., Hudson, W.R., Pascal, R.A., Jr, Bernhard, S.: Accelerated luminophore discovery through combinatorial synthesis. J. Am. Chem. Soc. 126(43), 14129–14135 (2004)

    Google Scholar 

  88. Su, H.-C., Fang, F.-C., Hwu, T.-Y., Hsieh, H.-H., Chen, H.-F., Lee, G.-S., Peng, S.-M., Wong, K.-T., Wu, C.-C.: Highly efficient orange and green solid-state light-emitting electrochemical cells based on cationic IrIII complexes with enhanced steric hindrance. Adv. Mater. 17(6), 1019–1027 (2007)

    CAS  Google Scholar 

  89. Zhao, Q., Lin, S., Shi, M., Wang, C., Yu, M., Li, L., Li, F., Yi, T., Huang, C.: Series of new cationic iridium(III) complexes with tunable emission wavelength and excited state properties: structures, theoretical calculations, and photophysical and electrochemical properties. Inorg. Chem. 45(16), 6152–6160 (2006)

    Article  CAS  Google Scholar 

  90. Xu, H., Chen, R., Sun, Q., Lai, W., Su, Q., Huang, W., Liu, X.: Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 43(10), 3259–3302 (2014)

    Article  CAS  Google Scholar 

  91. Bolink, H.J., Cappelli, L., Cheylan, S., Coronado, E., Costa, R.D., Lardies, N., Nazeeruddin, M.K., Orti, E.: Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium (III) complex. J. Mater. Chem. 17(48), 5032–5041 (2007)

    Article  CAS  Google Scholar 

  92. He, L., Duan, L., Qiao, J., Wang, R., Wei, P., Wang, L., Qiu, Y.: Blue-emitting cationic iridium complexes with 2-(1H-pyrazol-1-yl)pyridine as the ancillary ligand for efficient light-emitting electrochemical cells. Adv. Mater. 18(14), 2123–2131 (2008)

    CAS  Google Scholar 

  93. Margapoti, E., Shukla, V., Valore, A., Sharma, A., Dragonetti, C., Kitts, C.C., Roberto, D., Murgia, M., Ugo, R., Muccini, M.: Excimer emission in single layer electroluminescent devices based on [Ir(4,5-diphenyl-2-methylthiazolo)2(5-methyl-1,10-phenanthroline)]+ [PF6]. J. Phys. Chem. C 113(28), 12517–12522 (2009)

    Article  CAS  Google Scholar 

  94. Meier, S.B., Sarfert, W., Junquera-Hernández, J.M., Delgado, M., Tordera, D., Orti, E., Bolink, H.J., Kessler, F., Scopelliti, R., Grätzel, M., Nazeeruddin, M.K., Baranoff, E.: A deep-blue emitting charged bis-cyclometalated iridium(III) complex for light-emitting electrochemical cells. J. Mater. Chem. 1, 58–68 (2013)

    CAS  Google Scholar 

  95. Fernández-Hernández, J.M., Ladouceur, S., Shen, Y., Iordache, A., Wang, X., Donato, L., Gallagher-Duval, S., de Anda, Villa M., Slinker, J.D., De Cola, L., Zysman-Colman, E.: Blue light emitting electrochemical cells incorporating triazole-based luminophores. J. Mater. Chem. 1(44), 7440–7452 (2013)

    Google Scholar 

  96. Yang, C.-H., Beltran, J., Lemaur, V., Cornil, J., Hartmann, D., Sarfert, W., Fröhlich, R., Bizzarri, C., De Cola, L.: Iridium metal complexes containing N-heterocyclic carbene ligands for blue-light-emitting electrochemical cells. Inorg. Chem. 49(21), 9891–9901 (2010)

    Article  CAS  Google Scholar 

  97. Mydlak, M., Bizzarri, C., Hartmann, D., Sarfert, W., Schmid, G., De Cola, L.: Positively charged iridium(III) triazole derivatives as blue emitters for light-emitting electrochemical cells. Adv. Funct. Mater. 20(11), 1812–1820 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dumur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dumur, F. (2017). Light-Emitting Electrochemical Cells. In: Miomandre, F., Audebert, P. (eds) Luminescence in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-49137-0_10

Download citation

Publish with us

Policies and ethics