Skip to main content

Emission Spectroelectrochemistry: Cell Design and Setup

  • Chapter
  • First Online:
Luminescence in Electrochemistry

Abstract

This chapter reviews the most recent developments in the fluorescence spectroelectrochemistry, coupled detection of fluorescence and electrochemical signals. It focuses on the instrumental development in fluorescence spectroelectrochemistry and recent coupling of electrochemical techniques with fluorescence microscopy. The first part is dedicated to conventional fluorescence spectroelectrochemistry cells and the second one to the electrochemistry and fluorescence microscopy coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blubaugh, E.A., Yacynych, A.M., Heineman, W.R.: Thin-layer spectroelectrochemistry for monitoring kinetics of electrogenerated species. Anal. Chem. 51(4), 561–565 (1979). doi:10.1021/ac50040a026

    Article  CAS  Google Scholar 

  2. Kaim, W., Fiedler, J.: Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38(12), 3373–3382 (2009). doi:10.1039/b504286k

    Article  CAS  Google Scholar 

  3. Dunsch, L.: Recent advances in in situ multi-spectroelectrochemistry. J. Solid State Electrochem. 15(7–8), 1631–1646 (2011). doi:10.1007/s10008-011-1453-1

    Article  CAS  Google Scholar 

  4. Melin, F., Hellwig, P.: Recent advances in the electrochemistry and spectroelectrochemistry of membrane proteins. Bio. Chem. 394(5), 593–609 (2013). doi:10.1515/hsz-2012-0344

    CAS  Google Scholar 

  5. Pruiksma, R., McCreery, R.L.: Observation of electrochemical concentration profiles by absorption spectroelectrochemistry. Anal. Chem. 51(13), 2253–2257 (1979). doi:10.1021/ac50049a045

    Article  CAS  Google Scholar 

  6. Skully, J.P., McCreery, R.L.: Glancing incidence external reflection spectroelectrochemistry with a continuum source. Anal. Chem. 52(12), 1885–1889 (1980). doi:10.1021/ac50062a025

    Article  CAS  Google Scholar 

  7. Robinson, R.S., McCreery, R.L.: Absorption spectroelectrochemistry with microelectrodes. Anal. Chem. 53(7), 997–1001 (1981). doi:10.1021/ac00230a017

    Article  CAS  Google Scholar 

  8. Brewster, J.D., Anderson, J.L.: Fiber optic thin-layer spectroelectrochemistry with long optical-path. Anal. Chem. 54(14), 2560–2566 (1982). doi:10.1021/ac00251a035

    Article  CAS  Google Scholar 

  9. Robinson, R.S., McCurdy, C.W., McCreery, R.L.: Microsecond spectroelectrochemistry by external reflection from cylindrical microelectrodes. Anal. Chem. 54(13), 2356–2361 (1982). doi:10.1021/ac00250a049

    Article  CAS  Google Scholar 

  10. Bard, A.J., Faulkner, L.R., Brisset, J.L.: Electrochimie: principes, méthodes et applications. Masson (1983)

    Google Scholar 

  11. Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. Wiley (2000)

    Google Scholar 

  12. Zoski, C.G.: Handbook of electrochemistry. Elsevier (2007)

    Google Scholar 

  13. Kaim, W., Klein, A.: Spectroelectrochemistry. Roy. Soc. Chem. (2008)

    Google Scholar 

  14. Gaillard, F., Levillain, E.: Visible time-resolved spectroelectrochemistry—application to study of the reduction of sulfur (S-8) in dimethylformamide. J. Electroanal. Chem. 398(1–2), 77–87 (1995). doi:10.1016/0022-0728(95)04144-1

    Article  Google Scholar 

  15. Aleveque, O., Levillain, E., Sanguinet, L.: Spectroelectrochemistry on electroactive self-assembled monolayers: cyclic voltammetry coupled to spectrophotometry. Electrochem. Commun. 51, 108–112 (2015). doi:10.1016/j.elecom.2014.12.014

    Article  CAS  Google Scholar 

  16. Neudeck, A., Dunsch, L.: Cyclic voltammetry at microstructured electrodes. J. Electroanal. Chem. 370(1–2), 17–32 (1994). doi:10.1016/0022-0728(93)03206-5

    Article  CAS  Google Scholar 

  17. Neudeck, A., Dunsch, L.: Microstructured electrode materials in UV-visible spectroelectrochemistry. J. Electroanal. Chem. 386(1–2), 135–148 (1995). doi:10.1016/0022-0728(95)03824-z

    Article  Google Scholar 

  18. Niu, J.J., Dong, S.J.: Transmission spectroelectrochemistry. Rev. Anal. Chem. 15(1–2), 1–171 (1996)

    Article  CAS  Google Scholar 

  19. Frank, O., Dresselhaus, M.S., Kalbac, M.: Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems. Acc. Chem. Res. 48(1), 111–118 (2015). doi:10.1021/ar500384p

    Article  CAS  Google Scholar 

  20. Gaillard, F., Levillain, E., Dhamelincourt, M.C., Dhamelincourt, P., Lelieur, J.P.: Polysulphides in dimethylformamide: a micro-Raman spectroelectrochemical study. J. Raman Spectrosc. 28(7), 511–517 (1997). doi:10.1002/(sici)1097-4555(199707)28:7<511:aid-jrs119>3.3.co;2-w

    Article  CAS  Google Scholar 

  21. Bellec, V., De Backer, M.G., Levillain, E., Sauvage, F.X., Sombret, B., Wartelle, C.: In situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ. Electrochem. Commun. 3(9), 483–488 (2001). doi:10.1016/s1388-2481(01)00158-8

    Article  CAS  Google Scholar 

  22. Wartelle, C., Viruela, P.M., Viruela, R., Orti, E., Sauvage, F.X., Levillain, E., Le Derf, F., Salle, M.: A study by spectroelectrochemical FTIR and density functional theory calculations of the reversible complexing ability of an electroactive tetrathiafulvalene crown. J. Phys. Chem. A 109(6), 1188–1195 (2005). doi:10.1021/jp045397y

    Article  CAS  Google Scholar 

  23. Ashley, K., Pons, S.: Infrared spectroelectrochemistry. Chem. Rev. 88(4), 673–695 (1988). doi:10.1021/cr00086a006

    Article  CAS  Google Scholar 

  24. Miomandre, F., Meallet-Renault, R., Vachon, J.-J., Pansu, R.B., Audebert, P.: Fluorescence microscopy coupled to electrochemistry: a powerful tool for the controlled electrochemical switch of fluorescent molecules. Chem. Commun. 16, 1913–1915 (2008). doi:10.1039/b718899d

    Article  Google Scholar 

  25. Dias, M., Hudhomme, P., Levillain, E., Perrin, L., Sahin, Y., Sauvage, F.X., Wartelle, C.: Electrochemistry coupled to fluorescence spectroscopy: a new versatile approach. Electrochem. Commun. 6(3), 325–330 (2004). doi:10.1016/j.elecom.2004.01.010

    Article  CAS  Google Scholar 

  26. Petr, A., Dunsch, L., Neudeck, A.: In situ UV-vis ESR spectroelectrochemistry. J. Electroanal. Chem. 412(1–2), 153–158 (1996). doi:10.1016/0022-0728(96)04582-2

    Article  Google Scholar 

  27. Rapta, P., Neudeck, A., Petr, A., Dunsch, L.: In situ EPR/UV-VIS spectroelectrochemistry of polypyrrole redox cycling. J. Chem. Soc. Faraday Trans. 94(24), 3625–3630 (1998). doi:10.1039/a806423g

    Article  CAS  Google Scholar 

  28. Sharpe, L.R., Heineman, W.R., Elder, R.C.: EXAFS spectroelectrochemistry. Chem. Rev. 90(5), 705–722 (1990). doi:10.1021/cr00103a002

    Article  CAS  Google Scholar 

  29. Dong, S.J., Niu, J.J., Cotton, T.M.: Ultraviolet-visible spectroelectrochemistry of redox proteins. Biochem. Spectrosc. 246, 701–732 (1995)

    Article  CAS  Google Scholar 

  30. Taboy, C.H., Bonaventura, C., Crumbliss, A.L.: Anaerobic oxidations of myoglobin and hemoglobin by spectroelectrochemistry. Redox Cell Biol. Genet. Pt B 353, 187–209 (2002)

    Article  CAS  Google Scholar 

  31. Murgida, D., Hildebrandt, P.: Surface-enhanced vibrational spectroelectrochemistry: Electric-field effects on redox and redox-coupled processes of heme proteins. Sur. Enhanced Raman Scattering Phy. Appl. 103, 313–334 (2006)

    Article  CAS  Google Scholar 

  32. Best, S.P.: Spectroelectrochemistry of hydrogenase enzymes and related compounds. Coord. Chem. Rev. 249(15–16), 1536–1554 (2005). doi:10.1016/j.ccr.2005.01.012

    Article  CAS  Google Scholar 

  33. Audebert, P., Miomandre, F.: Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 4(2), 575–584 (2013). doi:10.1039/c2sc21503a

    Article  CAS  Google Scholar 

  34. Heineman, W.R.: Spectroelectrochemistry: the combination of optical and electrochemical techniques. J. Chem. Educ. 60(4), 305 (1983). doi:10.1021/ed060p305

    Article  CAS  Google Scholar 

  35. Kim, Y., Kim, E., Clavier, G., Audebert, P.: New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem. Commun. 34, 3612–3614 (2006). doi:10.1039/b608312a

    Article  Google Scholar 

  36. Schroll, C.A., Chatterjee, S., Heineman, W.R., Bryan, S.A.: Thin-layer spectroelectrochemistry on an Aqueous Microdrop. Electroanalysis 24(5), 1065–1070 (2012). doi:10.1002/elan.201100711

    Article  CAS  Google Scholar 

  37. Voicescu, M., Rother, D., Bardischewsky, F., Friedrich, C.G., Hellwig, P.: A combined fluorescence spectroscopic and electrochemical approach for the study of thioredoxins. Biochemistry 50(1), 17–24 (2011). doi:10.1021/bi1013112

    Article  CAS  Google Scholar 

  38. Brisendine, J.M., Mutter, A.C., Cerda, J.F., Koder, R.L.: A three-dimensional printed cell for rapid, low-volume spectroelectrochemistry. Anal. Biochem. 439(1), 1–3 (2013). doi:10.1016/j.ab.2013.03.036

    Article  CAS  Google Scholar 

  39. Kuwana, T., Darlington, R.K., Leedy, D.W.: Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 36(10), 2023–2025 (1964). doi:10.1021/ac60216a003

    Article  CAS  Google Scholar 

  40. Yildiz, A., Kissinger, P.T., Reilley, C.N.: Evaluation of an improved thin-layer electrode. Anal. Chem. 40(7), 1018–1024 (1968). doi:10.1021/ac60263a012

    Article  CAS  Google Scholar 

  41. Wilson, R.A., Pinyayev, T.S., Membreno, N., Heineman, W.R.: Rapid prototyped optically transparent thin-layer electrode holder for spectroelectrochemistry in bench-top spectrophotometers. Electroanalysis 22(19), 2162–2166 (2010). doi:10.1002/elan.201000267

    Article  CAS  Google Scholar 

  42. Compton, R.G., Fisher, A.C., Wellington, R.G.: A thin-layer electrode cell for fluorescence measurements on electrogenerated intermediates. Electroanalysis 3(1), 27–29 (1991). doi:10.1002/elan.1140030105

    Article  CAS  Google Scholar 

  43. Simone, M.J., Heineman, W.R., Kreishman, G.P.: Preliminary spectrofluoroelectrochemical studies indicate a possible conformational change in horse heart cytochrome c upon reduction. J. Colloid Interface Sci. 86(2), 295–298 (1982). doi:10.1016/0021-9797(82)90075-3

    Article  CAS  Google Scholar 

  44. McLeod, C.W., West, T.S.: Spectroelectrochemistry of morphine and related alkaloids and their investigation by fluorescence in a gold micromesh cell. Analyst 107(1270), 1–11 (1982). doi:10.1039/AN9820700001

    Article  CAS  Google Scholar 

  45. Jones, E.T.T., Faulkner, L.R.: Luminescence spectroelectrochemistry in thin layer cells. J. Electroanal. Chem. Interfacial Electrochem. 179(1), 53–64 (1984). doi:10.1016/S0022-0728(84)80274-0

    Article  CAS  Google Scholar 

  46. Heineman, W.R., Norris, B.J., Goelz, J.F.: Measurement of enzyme E.deg’. values by optically transparent thin layer electrochemical cells. Anal. Chem. 47(1), 79–84 (1975). doi:10.1021/ac60351a001

    Article  CAS  Google Scholar 

  47. Miomandre, F., Allain, C., Clavier, G., Audibert, J.-F., Pansu, R.B., Audebert, P., Hartl, F.: Coupling thin layer electrochemistry with epifluorescence microscopy: An expedient way of investigating electrofluorochromism of organic dyes. Electrochem. Commun. 13(6), 574–577 (2011). doi:10.1016/j.elecom.2011.03.013

    Article  CAS  Google Scholar 

  48. Simone, M.J., Heineman, W.R., Kreishman, G.P.: Long optical path electrochemical cell for absorption or fluorescence spectrometers. Anal. Chem. 54(13), 2382–2384 (1982). doi:10.1021/ac00250a058

    Article  CAS  Google Scholar 

  49. Lee, Y.F., Kirchhoff, J.R.: Design and characterization of a spectroelectrochemistry cell for absorption and luminescence measurements. Anal. Chem. 65(23), 3430–3434 (1993). doi:10.1021/ac00071a016

    Article  CAS  Google Scholar 

  50. Lee, Y.F., Kirchhoff, J.R.: Absorption and luminescence spectroelectrochemical characterization of a highly luminescent rhenium(II) complex. J. Am. Chem. Soc. 116(8), 3599–3600 (1994). doi:10.1021/ja00087a056

    Article  CAS  Google Scholar 

  51. Kirchhoff, J.R.: Luminescence spectroelectrochemistry. Curr. Sep. 16(1), 11–14 (1997)

    CAS  Google Scholar 

  52. Compton, R.G., Fisher, A.C., Wellington, R.G., Winkler, J.: Spectrofluorometric hydrodynamic voltammetry—theory and practice. J. Phys. Chem. 96(20), 8153–8157 (1992). doi:10.1021/j100199a061

    Article  CAS  Google Scholar 

  53. Compton, R.G., Wellington, R.G.: Spectrofluorometric hydrodynamic voltammetry—the investigation of electrode-reaction mechanisms. J. Phys. Chem. 98(1), 270–273 (1994). doi:10.1021/j100052a045

    Article  CAS  Google Scholar 

  54. Compton, R.G., Winkler, J., Riley, D.J., Bearpark, S.D.: Spectrofluorometric hydrodynamic voltammetry—investigation of reactions at solid/liquid interfaces. J. Phys. Chem. 98(27), 6818–6825 (1994). doi:10.1021/j100078a026

    Article  CAS  Google Scholar 

  55. Yu, J.-S., Yang, C., Fang, H.-Q.: Variable thickness thin-layer cell for electrochemistry and in situ UV–VIS absorption, luminescence and surface-enhanced Raman spectroelectrochemistry. Anal. Chim. Acta 420(1), 45–55 (2000). doi:10.1016/S0003-2670(00)01005-9

    Article  CAS  Google Scholar 

  56. Salbeck, J.: An electrochemical cell for simultaneous electrochemical and spectroelectrochemical measurements under semi-infinite diffusion conditions and thin-layer conditions. J. Electroanal. Chem. 340(1–2), 169–195 (1992). doi:10.1016/0022-0728(92)80297-H

    Article  CAS  Google Scholar 

  57. Bkhach, S., Le Duc, Y., Aleveque, O., Gautier, C., Hudhomme, P., Levillain, E.: Highly stable perylenediimide based self-assembled monolayers studied by spectroelectrochemistry. Chem. ElectroChem. 3(6), 887–891 (2016). doi:10.1002/celc.201600034

  58. Palacios, R.E., Fan, F.R.F., Bard, A.J., Barbara, P.F.: Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128(28), 9028–9029 (2006). doi:10.1021/ja062848e

    Article  CAS  Google Scholar 

  59. Miomandre, F., Lepicier, E., Munteanu, S., Galangau, O., Audibert, J.F., Meallet-Renault, R., Audebert, P., Pansu, R.B.: Electrochemical monitoring of the fluorescence emission of tetrazine and bodipy dyes using total internal reflection fluorescence microscopy coupled to electrochemistry. Acs Appl. Mater. Interfaces 3(3), 690–696 (2011). doi:10.1021/am100980u

    Article  CAS  Google Scholar 

  60. Lei, C., Hu, D., Ackerman, E.J.: Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chem. Commun. 43, 5490–5492 (2008). doi:10.1039/b812161c

    Article  Google Scholar 

  61. Lei, C., Hu, D., Ackerman, E.: Clay nanoparticle-supported single-molecule fluorescence spectroelectrochemistry. Nano Lett. 9(2), 655–658 (2009). doi:10.1021/nl802998e

    Article  CAS  Google Scholar 

  62. Galland, C., Ghosh, Y., Steinbruck, A., Sykora, M., Hollingsworth, J.A., Klimov, V.I., Htoon, H.: Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479(7372):203–207 (2011). doi:http://www.nature.com/nature/journal/v479/n7372/abs/nature10569.html#supplementary-information

  63. Salverda, J.M., Patil, A.V., Mizzon, G., Kuznetsova, S., Zauner, G., Akkilic, N., Canters, G.W., Davis, J.J., Heering, H.A., Aartsma, T.J.: Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity. Angew. Chem. Int. Ed. 49(33), 5776–5779 (2010). doi:10.1002/anie.201001298

    Article  CAS  Google Scholar 

  64. Amatore, C., Arbault, S., Chen, Y., Crozatier, C., Lemaitre, F., Verchier, Y.: Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events. Angewandte Chem. Int. Ed. 45(24), 4000–4003 (2006). doi:10.1002/anie.200600510

    Article  CAS  Google Scholar 

  65. Shi, B.-X., Wang, Y., Lam, T.-L., Huang, W.-H., Zhang, K., Leung, Y.-C., Chan, H.L.W.: Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry. Biomicrofluidics 4(4), 043009 (2010). doi:10.1063/1.3491470

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Flavy Alévêque and Dr. Clément Cabanetos for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Levillain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alévêque, O., Levillain, E. (2017). Emission Spectroelectrochemistry: Cell Design and Setup. In: Miomandre, F., Audebert, P. (eds) Luminescence in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-49137-0_1

Download citation

Publish with us

Policies and ethics