Skip to main content

Part of the book series: Probability and Its Applications ((PA))

  • 706 Accesses

Abstract

The definition of the Bernoulli sieve which is an infinite allocation scheme can be found on p. 1. Assuming that the number of balls to be allocated equals n (in other words, using a sample of size n from a uniform distribution on [0, 1]), denote by K n the number of occupied boxes and by M n the index of the last occupied box. Also, put L n : = M n K n and note that L n equals the number of empty boxes within the occupancy range (i.e., we only count the empty boxes with indices not exceeding M n ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. G. Alsmeyer, A. Iksanov and A. Marynych, Functional limit theorems for the number of occupied boxes in the Bernoulli sieve. Stoch. Proc. Appl., to appear (2017).

    Google Scholar 

  2. R. R. Bahadur, On the number of distinct values in a large sample from an infinite discrete distribution. Proc. Nat. Inst. Sci. India. 26A (1960), 66–75.

    MathSciNet  MATH  Google Scholar 

  3. A. D. Barbour, Univariate approximations in the infinite occupancy scheme. Alea, Lat. Am. J. Probab. Math. Stat. 6 (2009), 415–433.

    Google Scholar 

  4. A. D. Barbour and A. V. Gnedin, Small counts in the infinite occupancy scheme. Electron. J. Probab. 14 (2009), 365–384.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. V. Bogachev, A. V. Gnedin and Yu. V. Yakubovich, On the variance of the number of occupied boxes. Adv. Appl. Math. 40 (2008), 401–432.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. A. Darling, Some limit theorems assiciated with multinomial trials. Proc. Fifth Berkeley Symp. on Math. Statist. and Probab. 2 (1967), 345–350.

    Google Scholar 

  7. O. Durieu and Y. Wang, From infinite urn schemes to decompositions of self-similar Gaussian processes. Electron. J. Probab. 21 (2016), paper no. 43, 23 pp.

    Google Scholar 

  8. M. Dutko, Central limit theorems for infinite urn models. Ann. Probab. 17 (1989), 1255–1263.

    Article  MathSciNet  MATH  Google Scholar 

  9. Sh. K. Formanov and A. Asimov, A limit theorem for the separable statistic in a random assignment scheme. J. Sov. Math. 38 (1987), 2405–2411.

    Article  MATH  Google Scholar 

  10. A. V. Gnedin, The Bernoulli sieve. Bernoulli 10 (2004), 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Gnedin, A. Hansen and J. Pitman, Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Probab. Surv. 4 (2007), 146–171.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Gnedin and A. Iksanov, Regenerative compositions in the case of slow variation: A renewal theory approach. Electron. J. Probab. 17 (2012), paper no. 77, 19 pp.

    Google Scholar 

  13. A. Gnedin, A. Iksanov and A. Marynych, Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stochastic Process. 16(32) (2010), 44–57.

    MathSciNet  MATH  Google Scholar 

  14. A. Gnedin, A. Iksanov, and A. Marynych, The Bernoulli sieve: an overview. In Proceedings of the 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10), Discrete Math. Theor. Comput. Sci. AM (2010), 329–341.

    Google Scholar 

  15. A. Gnedin, A. Iksanov and A. Marynych, A generalization of the Erdős-Turán law for the order of random permutation. Combin. Probab. Comput. 21 (2012), 715–733.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Gnedin, A. Iksanov, P. Negadailov and U. Rösler, The Bernoulli sieve revisited. Ann. Appl. Probab. 19 (2009), 1634–1655.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Gnedin, A. Iksanov and U. Roesler, Small parts in the Bernoulli sieve. In Proceedings of the Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc. AI (2008), 235–242.

    Google Scholar 

  18. H. K. Hwang and S. Janson, Local limit theorems for finite and infinite urn models. Ann. Probab. 36 (2008), 992–1022.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Iksanov, On the number of empty boxes in the Bernoulli sieve II. Stoch. Proc. Appl. 122 (2012), 2701–2729.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Iksanov, On the number of empty boxes in the Bernoulli sieve I. Stochastics. 85 (2013), 946–959.

    MathSciNet  MATH  Google Scholar 

  21. A. M. Iksanov, A. V. Marynych and V. A. Vatutin, Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve. Theory Probab. Appl. 59 (2015), 87–113.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Karlin, Central limit theorems for certain infinite urn schemes. J. Math. Mech. 17 (1967), 373–401.

    MathSciNet  MATH  Google Scholar 

  23. V. F. Kolchin, B. A. Sevastyanov and V. P. Chistyakov, Random allocations. V.H.Winston & Sons, 1978.

    Google Scholar 

  24. V. G. Mikhailov, The central limit theorem for a scheme of independent allocation of particles by cells. Proc. Steklov Inst. Math. 157 (1983), 147–163.

    Google Scholar 

  25. Sh. A. Mirakhmedov, Randomized decomposable statistics in a generalized allocation scheme over a countable set of cells. Diskret. Mat. 1 (1989), 46–62 (in Russian).

    MathSciNet  MATH  Google Scholar 

  26. Sh. A. Mirakhmedov, Randomized decomposable statistics in a scheme of independent allocation of particles into cells. Diskret. Mat. 2 (1990), 97–111 (in Russian).

    MathSciNet  MATH  Google Scholar 

  27. P. Negadailov, Limit theorems for random recurrences and renewal-type processes. PhD thesis, University of Utrecht, the Netherlands. Available at http://igitur-archive.library.uu.nl/dissertations/2010-0823-200228/negadailov.pdf

  28. E. T. Whittaker and G. N. Watson, A course of modern analysis. 4th Edition reprinted, Cambridge University Press, 1950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Iksanov, A. (2016). Application to the Bernoulli Sieve. In: Renewal Theory for Perturbed Random Walks and Similar Processes. Probability and Its Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49113-4_5

Download citation

Publish with us

Policies and ethics