Skip to main content

Perturbed Random Walks

  • Chapter
  • First Online:
  • 759 Accesses

Part of the book series: Probability and Its Applications ((PA))

Abstract

Let \((\xi _{k},\eta _{k})_{k\in \mathbb{N}}\) be a sequence of i.i.d. two-dimensional random vectors with generic copy (ξ, η). No condition is imposed on the dependence structure between ξ and η.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use xy or max(x, y), xy or min(x, y) interchangeably, depending on typographical convenience.

  2. 2.

    To give a better feeling of the result, consider the simplest situation when \(\mathbb{E}\xi \in (-\infty, 0)\) and \(\mathbb{E}\eta ^{+} <\infty\). Then, by the strong law of large numbers, S n drifts to − at a linear rate. On the other hand, lim n →  n −1 η n + = 0 a.s. by the Borel–Cantelli lemma which shows that η n + grows at most sublinearly. Combining pieces together shows lim n →  (S n−1 +η n ) = − a.s.

  3. 3.

    A strange assumption \(\mathbb{P}\{\eta = -\infty \}\in [0, 1)\) which is made here and in Lemma 1.3.12 is of principal importance for the proof of Theorem 2.1.5.

  4. 4.

    Actually, Breiman (Proposition 3 in [52]) only proved the result for α ∈ (0, 1). The whole range α > 0 was later covered by Corollary 3.6 (iii) in [70].

  5. 5.

    Actually, \(\mathbb{E}\exp (a\,\sup _{n\geq 0}S_{n}) <\infty\) if, and only if, \(\mathbb{E}e^{a\xi } <1\). To prove the implication ⇐ just use the inequality \(\mathbb{E}\exp (a\,\sup _{n\geq 0}S_{n}) \leq \mathbb{E}\sum _{n\geq 0}e^{aS_{n}} = (1 - \mathbb{E}e^{a\xi })^{-1}\).

  6. 6.

    This is indeed a probability measure because, in view of the first condition in (1.16), \((e^{aS_{n}})_{n\in \mathbb{N}_{ 0}}\) is a nonnegative martingale with respect to the natural filtration.

  7. 7.

    The only principal difference is that one should use \(S_{[n\cdot ]}/n \Rightarrow \mu \Upsilon (t)\) on D where \(\Upsilon (t) = t\) for t ≥ 0, rather than Donsker’s theorem in the form (1.54).

  8. 8.

    We recall that \(\sup _{\lambda _{ n}(\theta _{k}^{(n)})\leq t}(\,f_{0}(\theta _{k}^{(n)}) + y_{k}^{(n)}) = f_{0}(0)\) and \(\sup _{\lambda _{ n}(\bar{\theta }_{i}^{(n)})\leq t}(\,f_{0}(\bar{\theta }_{i}^{(n)}) +\bar{ y}_{i}^{(n)}) = f_{0}(0)\) if the supremum is taken over the empty set.

  9. 9.

    The weak convergence of finite-dimensional distributions is immediate from K [nt]  ≤  + K [nt]  >  = [nt] and the fact that K [nt]  >  converges in distribution. This extends to the functional convergence because the limit is continuous and K [nt]  ≤  is a.s. nondecreasing in t (recall Pólya’s extension of Dini’s theorem: convergence of monotone functions to a continuous limit is locally uniform).

Bibliography

  1. G. Alsmeyer, On generalized renewal measures and certain first passage times. Ann. Probab. 20 (1992), 1229–1247.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alsmeyer, A. Iksanov and M. Meiners, Power and exponential moments of the number of visits and related quantities for perturbed random walks. J. Theoret. Probab. 28 (2015), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Alsmeyer, A. Iksanov and U. Rösler, On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666–682.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. F. Araman and P. W. Glynn, Tail asymptotics for the maximum of perturbed random walk. Ann. Appl. Probab. 16 (2006), 1411–1431.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Arratia, A. D. Barbour and S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach. European Mathematical Society, 2003.

    Book  MATH  Google Scholar 

  6. S. Asmussen, Applied probability and queues. 2nd Edition, Springer-Verlag, 2003.

    Google Scholar 

  7. J. Bertoin, Random fragmentation and coagulation processes. Cambridge University Press, 2006.

    Book  MATH  Google Scholar 

  8. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation. Cambridge University Press, 1989.

    MATH  Google Scholar 

  9. L. Breiman, On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10 (1965), 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), vol. II: Probability Theory, pp. 223–240. University of California Press, 1972.

    Google Scholar 

  11. L.-C. Chen and R. Sun, A monotonicity result for the range of a perturbed random walk. J. Theoret. Probab. 27 (2014), 997–1010.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables. Stoch. Proc. Appl. 49 (1994), 75–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Davis, Weak limits of perturbed random walks and the equation Y t = B t +αsup{Y s : st} +βinf{Y s : st}. Ann. Probab. 24 (1996), 2007–2023.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gnedin, A. Iksanov and A. Marynych, Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stochastic Process. 16(32) (2010), 44–57.

    MathSciNet  MATH  Google Scholar 

  15. C. M. Goldie, Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 (1991), 126–166.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. M. Goldie and R. A. Maller, Stability of perpetuities. Ann. Probab. 28 (2000), 1195–1218.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. I. Gomes, L. de Haan and D. Pestana, Joint exceedances of the ARCH process. J. Appl. Probab. 41 (2004), 919–926.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 (1994), 169–183.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Gut, Stopped random walks. Limit theorems and applications. 2nd Edition, Springer, 2009.

    Google Scholar 

  20. X. Hao, Q. Tang and L. Wei, On the maximum exceedance of a sequence of random variables over a renewal threshold. J. Appl. Probab. 46 (2009), 559–570.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Hitczenko, Comparison of moments for tangent sequences of random variables. Probab. Theory Relat. Fields. 78 (1988), 223–230.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Hitczenko and J. Wesołowski, Renorming divergent perpetuities. Bernoulli. 17 (2011), 880–894.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Iksanov, On the supremum of perturbed random walk. Bulletin of Kiev University. 1 (2007), 161–164 (in Ukrainian).

    Google Scholar 

  24. A. Iksanov and A. Pilipenko, On the maximum of a perturbed random walk. Stat. Probab. Letters. 92 (2014), 168–172.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Iksanov and A. Pilipenko, A functional limit theorem for locally perturbed random walks. Probab. Math. Statist. 36, to appear (2016).

    Google Scholar 

  26. A. Iksanov and S. Polotskiy, Tail behavior of suprema of perturbed random walks. Theory Stochastic Process. 21(36) (2016), 12–16.

    MATH  Google Scholar 

  27. T. Konstantopoulos and S.-J. Lin, Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 (1998), 215–243.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5 (1977), 946–954.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 (1979), 60–76.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. M. Meerschaert and S. A. Stoev, Extremal limit theorems for observations separated by random power law waiting times. J. Stat. Planning and Inference. 139 (2009), 2175–2188.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Mikosch and S. Resnick, Activity rates with very heavy tails. Stoch. Proc. Appl. 116 (2006), 131–155.

    Article  MathSciNet  MATH  Google Scholar 

  32. Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process. J. Appl. Probab. 44 (2007), 349–365.

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Palmowski and B. Zwart, On perturbed random walks. J. Appl. Probab. 47 (2010), 1203–1204.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. I. Pancheva and P. K. Jordanova, Functional transfer theorems for maxima of iid random variables. Comptes Rendus de l’Académie Bulgare des Sciences. 57 (2004), 9–14.

    MathSciNet  MATH  Google Scholar 

  35. E. Pancheva, I. K. Mitov and K. V. Mitov, Limit theorems for extremal processes generated by a point process with correlated time and space components. Stat. Probab. Letters. 79 (2009), 390–395.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. I. Resnick, Heavy-tail phenomena. Probabilistic and statistical modeling. Springer, 2007.

    Google Scholar 

  37. C. Y. Robert, Asymptotic probabilities of an exceedance over renewal thresholds with an application to risk theory. J. Appl. Probab. 42 (2005), 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Wang, Convergence to the maximum process of a fractional Brownian motion with shot noise. Stat. Probab. Letters. 90 (2014), 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Woodroofe, Nonlinear renewal theory in sequential analysis. SIAM, 1982.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Iksanov, A. (2016). Perturbed Random Walks. In: Renewal Theory for Perturbed Random Walks and Similar Processes. Probability and Its Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49113-4_1

Download citation

Publish with us

Policies and ethics