On-line Voting System with Illegal Ballot Filtering Using Homomorphic Encryption

  • Mun-Kyu LeeEmail author
  • Jong-Hyuk Im
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 2)


A simple on-line voting protocol using homomorphic encryption is proposed. In addition to the basic properties required of a voting system, e. g., a voter’s privacy, the system has additional functionalities such as automatic filtering of illegal ballot. Moreover, it is also possible that a voter who inadvertently cast a spoilt vote may vote again without revealing its secret ballot.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mursi, M., Aggassa, G., Abdelhafez, A., Sarma, K.: On the Development of Electronic Voting: A Survey. In: International Journal of Computer Applications, 61(16), 1-11 (2013)Google Scholar
  2. 2.
    Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In: Communications of the ACM, 24(2), 84-88 (1981)Google Scholar
  3. 3.
    Sako, K., Killian, J.: Receipt-Free Mix-Type Voting Scheme: A Practical Solution to The Implementation of A Voting Booth. In: EUROCRYPT ’95, 393–403 (1995)Google Scholar
  4. 4.
    Benaloh, J.: Verifiable Secret-Ballot Elections. In: Ph.D. thesis, Yale University (1987)Google Scholar
  5. 5.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-Authority Election Scheme. In: EUROCRYPT ’97, 103-118 (1997)Google Scholar
  6. 6.
    Schoenmakers, B.: A Simple Publicly Verifiable Secret Sharing Scheme and Its Applications to Electronic Voting. In: CRYPTO ’99, 148-164 (1999)Google Scholar
  7. 7.
    Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elections. In: AUSCRYPT ’92, 248–259 (1992)Google Scholar
  8. 8.
    Park, C., Itoh, K., Kurosawa, K: Efficient Anonymous Channel and all/nothing Election Scheme. In: EUROCRYT ’93, 248–259 (1993)Google Scholar
  9. 9.
    Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. In: WEPS ’05, 61-70 (2005)Google Scholar
  10. 10.
    Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC ’09, 169-178 (2010)Google Scholar
  11. 11.
    Rivest, R., Adleman, L., Dertouzos, M.: On Data Bank and Privacy Homomorphisms. In: Proceedings of the 19th Annual Symposium on Foundations of Secure Computation-FSC 1978, Academic Press, 169-180 (1978)Google Scholar
  12. 12.
    Paillier, P.: Public-Key Cryptosystems based on Composite Degree Residuosity Classes. In: EUROCRYPT ’99, 223–238 (1999)Google Scholar
  13. 13.
    Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Theory of cryptography, 3378, 325-341, (2005)Google Scholar
  14. 14.
    Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: EUROCRYPT ’10, 24-42 (2010)Google Scholar
  15. 15.
    Coron, J., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. In: EUROCRYPT ’12, 446-464 (2012)Google Scholar
  16. 16.
    Cheon, J., Coron, J., Kim, J., Lee, M., Lepoint, T., Tibouchi, M., Yun, A.: Batch Fully Homomorphic Encryption over the Integers. In: EUROCRYPT ’13, 315-335 (2013)Google Scholar
  17. 17.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic Encryption without Bootstrapping. In: ITCS ’12, 309-325 (2012)Google Scholar
  18. 18.
    Clear, M., McGoldrick, C.: Multi-Identity and Multi-Key Leveled FHE from Learning with Errors. In: CRYPTO ’15, 630-656 (2015)Google Scholar
  19. 19.
    Catalano, D., Fiore, D.: Using Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions on Encrypted Data. In: ACM-CCS ’15, 1518-1529 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer and Information EngineeringInha UniversityIncheonKorea

Personalised recommendations