Skip to main content

Automated Piping with Standardized Bends in Complex Systems Design

  • Conference paper
  • First Online:

Abstract

Combining subsystems to build a fully integrated product is a challenging task in complex systems design. The integration of flow components requires a fast creation and validation of different pipe route variants. In this article an algorithm for the automated generation of pipe routes in a given installation space is presented. The pipe route generation is constrained to the usage of prechosen (standardized) pipe bend sets. The routes are rule-based manipulated and evolved using a simulated annealing optimization scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This abbreviation is based on the German title Kegel=cone/Kegel=cone/Faßkreisbogen=inscribed angle.

References

  1. Voloshin, V.I. (ed.): Introduction to Graph Theory. Published by Nova Science Publishers Inc, New York (2009)

    MATH  Google Scholar 

  2. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

    MATH  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Flloyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5, S. 345 (1962)

    Google Scholar 

  5. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to: a formal basis for the heuristic determination of minimum cost paths. SIGART Newslett. 37, 28–29 (1972)

    Google Scholar 

  6. Koh, C.-K., Madden, P.H.: Manhattan or non-Manhattan?: a study of alternative VLSI routing architectures. In: Proceedings of the 10th Great Lakes symposium on VLSI. ACM (GLSVLSI), S. 47–52 (2000)

    Google Scholar 

  7. Lee, C.Y.: An algorithm for path connections and its applications. In: IRE Transactions on Electronic Computers EC-10, vol. 2, S. 346–365 (1961)

    Google Scholar 

  8. Soukup, J.: Global router. In: Proceedings of the 16th Design Automation Conference, pp. 481–484. IEEE Press, Piscataway, NJ, USA (1979) (DAC ’79)

    Google Scholar 

  9. Ito, D. (Hrsg.): Robot vision: strategies, algorithms and motion planning. Nova Sci. (2009). ISBN 9781606920916

    Google Scholar 

  10. Latombe, J.C.: Robot Motion Planning. Springer (1990). (The Springer International Series in Engineering and Computer Science). ISBN 9780792391296

    Google Scholar 

  11. Szlapczynski, R.: An algorithm for path connections and its applications. J. Navig. 59, 27–42 (2006)

    Article  Google Scholar 

  12. Velden, C.V., Bill, C., Yu, X., Smith, A.: An intelligent system for automatic layout routing in aerospace design. Innov. Syst. Soft. Eng. 3, 117–128 (2007)

    Article  Google Scholar 

  13. Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe routing. Comput. Chem. Eng. 30(1), 99–114 (2005). doi:10.1016/j.compchemeng.2005.08.009. ISSN 0098-1354

  14. Ito, T.: A genetic algorithm approach to piping route path planning. J. Intell. Manufact. 10, 103–114 (1999). doi:10.1023/A:1008924832167. ISSN 0956-5515

  15. Medjdoub, B.: Constraint-based adaption for complex space configuration in building services. J. Inf. Technol. Constr. 153–158 (2009)

    Google Scholar 

  16. Kang, S.-S., Sehyun, M., Han, S.-H.: A design expert system for auto-routing of ship pipes. J. Ship Prod. 15, 1–9 (1999)

    Google Scholar 

  17. Ikehira, S., Kimura, H.: Multi-objective genetic algorithms for pipe arrangement design. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), S. 1869–1870 (2006)

    Google Scholar 

  18. Ando, Y., Kimura, H.: An automatic piping algorithm including elbows and bends. In: International Conference on Computer Applications in Shipbuilding, S. 153–158 (2011)

    Google Scholar 

  19. Pahl, G. (Hrsg.), Beitz, W. (Hrsg.): Konstruktionslehre, Grundlagen erfolgreicher Produktentwicklung, Methoden und Anwendung. Springer (2003–2005)

    Google Scholar 

  20. Norm: DIN EN 10253-2:2008-09, Butt-Welding Pipe Fittings. Beuth Verlag (2008)

    Google Scholar 

  21. Norm: DIN 86009:2016-05, Exhaust Gas Lines on Ships—Steel Tubes. Beuth Verlag (2016)

    Google Scholar 

  22. Vogel, S.: Über Ordnungsmechanismen im wissensbasierten Entwurf von SCR-Systemen (to appear). Universität Stuttgart, Diss (2016)

    Google Scholar 

  23. Stiny, G.: Shape: Talking About Seeing And Doing. Mit Press (2006) http://books.google.de/books?id=xQpRAAAAMAAJ. ISBN 9780262195317

  24. Stiny, G., Gips, J., Stiny, G., Gips, J.: Shape Grammars and the generative specification of painting and sculpture. In: Segmentation of Buildings for 3DGeneralisation, Proceedings of the Workshop on generalisation and multiple representation. Leicester (1971)

    Google Scholar 

  25. Antonsson, E., Cagan, J.: Formal Engineering Design Synthesis. Cambridge University Press (2001)

    Google Scholar 

  26. Rudolph, S.: Übertragung von Ähnlichkeitsbegriffen. Universität Stuttgart, Habilitationsschrift (2002)

    Google Scholar 

  27. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1996). (The Virtual Laboratory). ISBN 9780387946764

    Google Scholar 

  28. Szykman, S., Cagan, J.: Synthesis of optimal nonorthogonal routes. J. Mech. Des. 118(3), 419–424 (1996). doi:10.1115/1.2826902

    Article  Google Scholar 

  29. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. In: Science 220, 4598 (13 May 1983), 671–680. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175

  30. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, (2008). (Kluwer international series in engineering and computer science: Robotics). http://books.google.de/books?id=UjWbvqWaf6gC. ISBN 9780387743158

  31. Smith, R.: ODE—Open Dynamics Engine. http://www.ode.org. Version: 2007. The Open Dynamics Engine (ODE) is a physics engine in C/C++. Its two main components are a rigid body dynamics and a collision detection

  32. Fitzpatrick, R.: Euclid’s Elements. Lulu.com, Book 3 (2007)

    Google Scholar 

  33. Kröplin, B., Rudolph, S.: Entwurfsgrammatiken-Ein Paradigmenwechsel? Der Prüfingenieur 26, 34–43 (2005)

    Google Scholar 

  34. Vogel, S.: Mathematische Dimension im Entwurf komplexer Systeme, TdSE 2015 (Tag des Systems Engineering) Ulm (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vogel, S., Rudolph, S. (2017). Automated Piping with Standardized Bends in Complex Systems Design. In: Fanmuy, G., Goubault, E., Krob, D., Stephan, F. (eds) Complex Systems Design & Management. CSDM 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-49103-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49103-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49102-8

  • Online ISBN: 978-3-319-49103-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics