Skip to main content

The Physiology of Numerical Learning: From Neural Correlates to Embodied Trainings

  • Chapter
  • First Online:
The Psychology of Digital Learning

Abstract

Numbers are an important part of everyday life in our modern knowledge societies. Accordingly, numerical deficits are associated with severe consequences for life prospects of affected individuals and society as a whole. Therefore, increasing research interest is devoted to broaden our understanding of the neurocognitive underpinnings of numerical learning and the development of new training approaches using new digital media. In this chapter, we will first evaluate the neural correlates of numerical cognition with a specific focus on structural and functional connectivity and how numerical learning is reflected in the human brain. In the second part of the chapter, we will elaborate on how numerical learning can be corroborated by computer-supported embodied spatial-numerical trainings. In these trainings, participants engage physically in a task using interactive input devices such as a digital dance mat or the Kinect sensor to corroborate spatial-numerical associations as reflected by the conceptual metaphor of a mental number line. Integrating these two lines of argument we discuss the possible origins of numerical cognition as redeployed neural correlates from physical experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. L., & Penner-Wilger, M. (2013). Neural reuse in the evolution and development of the brain: Evidence for developmental homology? Developmental Psychobiology, 55, 42–51.

    Article  Google Scholar 

  • Ansari, D., De Smedt, B., & Grabner, R. H. (2012). Neuroeducation—A critical overview of an emerging field. Neuroethics, 5, 105–117.

    Article  Google Scholar 

  • Arsalidou, M., & Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54, 2382–2393.

    Article  Google Scholar 

  • Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59, 617–645.

    Google Scholar 

  • Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35, 657–670.

    Article  Google Scholar 

  • Bisiach, E., Capitani, E., Luzzatti, C., & Perani, D. (1981). Brain and conscious representation of outside reality. Neuropsychologia, 19, 543–551.

    Article  Google Scholar 

  • Bloechle, J., Huber, S., Bahnmueller, J., Rennig, J., Willmes, K., Cavdaroglu, S., et al. (2016). Fact learning in complex arithmetic—The role of the angular gyrus revisited. Human Brain Mapping. doi:10.1002/hbm.23226.

    Google Scholar 

  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840.

    Article  Google Scholar 

  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.

    Article  Google Scholar 

  • Caspers, S., Eickhoff, S. B., Rick, T., von Kapri, A., Kuhlen, T., Huang, R., et al. (2011). Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage, 58, 362–380.

    Article  Google Scholar 

  • Catani, M., & ffytche, D. H. (2005). The rise and fall of disconnection syndromes. Brain, 128, 2224–2239.

    Article  Google Scholar 

  • Chrisomalis, S. (2004). A cognitive typology for numerical notation. Cambridge Archaeological Journal, 14, 37–52.

    Article  Google Scholar 

  • Cohen-Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84, 132–147.

    Article  Google Scholar 

  • Dackermann, T., Fischer, U., Cress, U., Nuerk, H.-C., & Moeller, K. (2016). Bewegtes Lernen numerischer Kompetenzen. Psychologische Rundschau, 67, 102–109.

    Google Scholar 

  • Dackermann, T., Fischer, U., Huber, S., Nuerk, H.-C., & Moeller, K. (2016). Training the equidistant principle of number line spacing. Cognitive Processing, 17, 243–258. doi:10.1007/s10339-016-0763-8.

    Article  Google Scholar 

  • De Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110, 198–207.

    Article  Google Scholar 

  • De Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21, 653–660.

    Article  Google Scholar 

  • De Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences of the United States of America, 111, 4809–4813.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250.

    Article  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—A fMRI study. Cognitive Brain Research, 18, 76–88.

    Article  Google Scholar 

  • Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116, 251–266.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press.

    Book  Google Scholar 

  • Ebersbach, M. (2015). Evidence for a Spatial–Numerical Association in Kindergartners Using a Number Line Task. Journal of Cognition and Development, 16, 118–128.

    Google Scholar 

  • Fischbach, A., Schuchardt, K., Brandenburg, J., Klesczewski, J., Balke-Melcher, C., Schmidt, C., et al. (2013). Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen, 2, 65–76.

    Article  Google Scholar 

  • Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44, 386–392.

    Article  Google Scholar 

  • Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial-numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260.

    Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition - From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67, 1461–1483.

    Google Scholar 

  • Fischer, U., Link, T., Cress, U., Nuerk, H.-C., & Moeller, K. (2014). Math with the dance mat: On the benefits of embodied numerical training approaches. In V. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal learning environments (pp. 149–163). New York, NY: Routledge.

    Google Scholar 

  • Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.-C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18, 177–183.

    Article  Google Scholar 

  • Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015). Full-body movement in numerical trainings: A pilot study with an interactive whiteboard. International Journal of Serious Games, 4, 23–35.

    Google Scholar 

  • Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277–299.

    Article  Google Scholar 

  • Goswami, U. (2008). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7, 406–413.

    Article  Google Scholar 

  • Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG.

    Google Scholar 

  • Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: Prevalence and characteristics of representational neglect. PloS One, 8, e67390.

    Article  Google Scholar 

  • Hartmann, M., Farkas, R., & Mast, F. W. (2012). Self-motion perception influences number processing: Evidence from a parity task. Cognitive Processing, 13, 189–192.

    Article  Google Scholar 

  • Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: Interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38, 1416–1427.

    Google Scholar 

  • Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., Gassner, A., & Nuerk, H.-C. (2008). Impairments of the mental number line for two-digit numbers in neglect. Cortex, 44, 429–438.

    Article  Google Scholar 

  • Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. NeuroImage, 36, 993–1003.

    Google Scholar 

  • Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30, 1365–1375.

    Article  Google Scholar 

  • Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93–110.

    Google Scholar 

  • Käser, T., Baschera, G., Kohn, J., Kucian, K., Richtmann, V., Grond, U., et al. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in Psychology, 4, 489.

    Article  Google Scholar 

  • Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L. B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44, 376–385.

    Article  Google Scholar 

  • Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-Analyses of Developmental fMRI Studies Investigating Typical and Atypical Trajectories of Number Processing and Calculation. Developmental Neuropsychology, 36, 763–787.

    Google Scholar 

  • Klein, E., Mann, A., Huber, S., Bloechle, J., Willmes, K., Karim, A. A., Nuerk, H.-C., & Moeller, K. (2013). Bilateral bi-cephalic tDCS with two active electrodes of the same polarity modulates bilateral cognitive processes differentially. PlosONE, 8, e71607.

    Google Scholar 

  • Klein, E., Moeller, K., & Willmes, K. (2013). A neural disconnection hypothesis on impaired numerical processing. Frontiers in Human Neuroscience, 7:663.

    Google Scholar 

  • Klein, E., Moeller, K., Glauche, V., Weiller, C., & Willmes, K. (2013). Processing pathways in mental arithmetic—Evidence from probabilistic fiber tracking. PLoS ONE, 8, e55455.

    Google Scholar 

  • Klein, E., Moeller, K., Nuerk, H.-C., & Willmes, K. (2010). On the cognitive foundations of basic auditory number processing. Behavioral and Brain Functions, 6:42.

    Google Scholar 

  • Klein, E., Nuerk, H.-C., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate: How different processes work together in multi-digit addition. Brain and Cognition, 69, 369–381.

    Article  Google Scholar 

  • Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., et al. (2014). Considering structural connectivity in the triple code model of numerical cognition—Differential connectivity for magnitude processing and arithmetic facts. Brain Structure & Function, 221, 979–995.

    Article  Google Scholar 

  • Klein, E., Willmes, K., Dressel, K., Domahs, F., Wood, G., Nuerk, H.-C., & Moeller, K. (2010). Categorical and continuous—Disentangling the neural correlates of the carry effect in multi-digit addition. Behavioral and Brain Functions, 6, 70.

    Article  Google Scholar 

  • Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585.

    Article  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795.

    Article  Google Scholar 

  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills—A longitudinal study. Frontiers in Psychology, 4, 459.

    Article  Google Scholar 

  • Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line—An embodied training of numerical concepts. Trends in Neuroscience and Education, 2, 74–84.

    Article  Google Scholar 

  • Link, T., Schwarz, E. J., Huber, S., Fischer, U., Nuerk, H.-C., Cress, U., & Moeller, K. (2014). Mathe mit der Matte—Verkörperlichtes Training basisnumerischer Kompetenzen [Math with the mat—embodied training of basic numerical competencies]. Zeitschrift für Erziehungswissenschaft, 17, 257–277.

    Article  Google Scholar 

  • Matejko, A. A., & Ansari, D. (2015). Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neuroscience & Biobehavioral Reviews, 48, 35–52.

    Article  Google Scholar 

  • McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15, 776–781.

    Article  Google Scholar 

  • McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103, 400–408.

    Article  Google Scholar 

  • McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69, 1324–1333.

    Article  Google Scholar 

  • Menninger, K. (1957). Zahlwort und Ziffer: Eine Kulturgeshichte der Zahlen. Göttingen: Vandehoeck & Ryprecht.

    Google Scholar 

  • Mihulowicz, U., Klein, E., Nuerk, H.-C., Willmes, K., & Karnath, H. O. (2015). Spatial displacement of numbers on a vertical number line in spatial neglect. Frontiers in Human Neuroscience, 9, 240.

    Article  Google Scholar 

  • Moeller, K., Fischer, U., Cress, U., & Nuerk, H.-C. (2012). Diagnostics and intervention in developmental dyscalculia: Current issues and novel perspectives. In Z. Breznitz, O. Rubinsten, V. Molfese, & D. L. Molfese (Eds.), Reading, writing, mathematics and the developing brain: Listening to many voices (pp. 233–276). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: Logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103, 503–515.

    Article  Google Scholar 

  • Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in Human Neuroscience, 9, 227.

    Article  Google Scholar 

  • Myachikov, A., Scheepers, C., Fischer, M. H., & Kessler, K. (2014). TEST: A Tropic, Embodied, and Situated Theory of Cognition. Topics in Cognitive Science, 6, 442–460.

    Google Scholar 

  • Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23, 264–282.

    Article  Google Scholar 

  • Noël, M. P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430.

    Article  Google Scholar 

  • Nuerk, H.-C., Klein, E., & Willmes, K. (2012). Zahlenverarbeitung und Rechnen [Number processing and calculation]. In F. Schneider & G. Fink (Eds.), Funktionelle MRT in Psychiatrie und Neurologie (2nd ed., pp. 443–455). Heidelberg: Springer.

    Google Scholar 

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy.

    Google Scholar 

  • Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13, 354–359.

    Article  Google Scholar 

  • Patro, K., & Haman, M. (2012). The spatial–numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111, 534–542.

    Article  Google Scholar 

  • Patro, K., Nuerk, H.-C., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology, 5, 419.

    Article  Google Scholar 

  • Penner-Wilger, M., & Anderson, M. L. (2008). An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. InProceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 1647–1652). Austin, TX: Gognitive Science Society.

    Google Scholar 

  • Penner-Wilger, M., & Anderson, M. L. (2011). The relation between finger gnosis and mathematical ability: Can we attribute function to cortical structure with cross-domain modeling? InProceedings of the 33rd Annual Cognitive Science Society (pp. 2445–2450). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17, 1263–1269.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.

    Article  Google Scholar 

  • Santiago, J., & Lakens, D. (2015). Can conceptual congruency effects between number, time, and space be accounted for by polarity correspondence? Acta Psychologica, 156, 179–191.

    Article  Google Scholar 

  • Saur, D., Kreher, B. W., Schnell, S., Kuemmerer, D., Kellermeyer, P., Vry, M.-S., et al. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105, 18035–18040.

    Article  Google Scholar 

  • Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359.

    Article  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43–49.

    Article  Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.

    Article  Google Scholar 

  • Simon, O., Kherif, F., Flandin, G., Poline, J. B., Rivière, D., Mangin, J. F., et al. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. Neuroimage, 23, 1192–1202.

    Article  Google Scholar 

  • Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.

    Article  Google Scholar 

  • Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L., & Menon, V. (2013). Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proceedings of the National Academy of Sciences, 110, 8230–8235.

    Article  Google Scholar 

  • Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or nonretrieval strategies in mental arithmetic? An operand recognition paradigm. Memory & Cognition, 35, 1344–1352.

    Google Scholar 

  • Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59, 3139–3148.

    Article  Google Scholar 

  • Umarova, R. M., Saur, D., Schnell, S., Kaller, C. P., Vry, M. S., Glauche, V., et al. (2010). Structural connectivity for visuospatial attention: Significance of ventral pathways. Cerebral Cortex, 20, 121–129.

    Article  Google Scholar 

  • Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: Evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.

    Article  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.

    Article  Google Scholar 

  • Willmes, K., & Klein, E. (2014). Akalkulie [Acalculia]. In H.-O. Karnath, W. Ziegler, & G. Goldenberg (Eds.), Klinische neuropsychologie—Kognitive neurologie (pp. 133–146). Stuttgart: Thieme.

    Google Scholar 

  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–237). New York: Guilford Press.

    Google Scholar 

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 1.

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636.

    Google Scholar 

  • Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.

    Google Scholar 

  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.

    Article  Google Scholar 

  • Wyschkon, A., Poltz, N., Höse, A., von Aster, M., & Esser, G. (2015). Schwache Fingergnosie als Risikofaktor für zukünftiges Rechnen? Lernen und Lernstörungen, 4, 159–175.

    Article  Google Scholar 

  • Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8, 88–101.

    Article  Google Scholar 

  • Zaunmüeller, L., Domahs, F., Dressel, K., Lonnemann, J., Klein, E., Ischebeck, A., & Willmes, K. (2009). Rehabilitation of arithmetic fact retrieval via extensive practice. A combined fMRI and behavioural case-study. Neuropsychological Rehabilitation, 19, 422–443.

    Article  Google Scholar 

  • Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165–190.

    Article  Google Scholar 

  • Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fischer, U., Klein, E., Dackermann, T., Moeller, K. (2017). The Physiology of Numerical Learning: From Neural Correlates to Embodied Trainings. In: Schwan, S., Cress, U. (eds) The Psychology of Digital Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-49077-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49077-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49075-5

  • Online ISBN: 978-3-319-49077-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics