A Multi-Stage Approach for Fast Person Re-identification

  • Bahram LaviEmail author
  • Giorgio Fumera
  • Fabio Roli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


One of the goals of person re-identification systems is to support video-surveillance operators and forensic investigators to find an individual of interest in videos taken by a network of non-overlapping cameras. This is attained by sorting images of previously observed individuals for decreasing values of their similarity with the query individual. Several appearance-based descriptors have been proposed so far, together with ad hoc similarity measures, mostly aimed at improving ranking quality. We address instead the issue of the processing time required to compute the similarity values, and propose a multi-stage ranking approach to attain a trade-off with ranking quality, for any given descriptor. We give a preliminary evaluation of our approach on the benchmark VIPeR data set, using different state-of-the-art descriptors.


Processing Time Recognition Accuracy Inverted List Ranking Quality Local Ternary Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bedagkar-Gala, A., Shah, S.K.: A survey of approaches and trends in person re-identification. Image Vis. Comput. 32(4), 270–286 (2014)CrossRefGoogle Scholar
  2. 2.
    Dutra, C.R., Schwartz, W.R., Souza, T., Alves, R., Oliveira, L.: Re-identifying people based on indexing structure and manifold appearance modeling. In: SIBGRAPI-Conference on Graphics, Patterns and Images, pp. 218–225 (2013)Google Scholar
  3. 3.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: International Conference on Computer Vision and Pattern Recognition, pp. 2360–2367 (2010)Google Scholar
  4. 4.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88682-2_21 CrossRefGoogle Scholar
  5. 5.
    Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21227-7_9 CrossRefGoogle Scholar
  6. 6.
    Hirzer, M., Roth, P.M., Bischof, H.: Person re-identification by efficient impostor-based metric learning. In: International Conference on Advanced Video and Signal-Based Surveillance, pp. 203–208 (2012)Google Scholar
  7. 7.
    Huang, S., Gu, Y., Yang, J., Shi, P.: Reranking of person re-identification by manifold-based approach. In: International Conference on Image Processing, pp. 4253–4257 (2015)Google Scholar
  8. 8.
    Kaynak, C., Alpaydin, E.: Multistage cascading of multiple classifiers: one man’s noise is another man’s data. In: International Conference on Machine Learning, pp. 455–462 (2000)Google Scholar
  9. 9.
    Khedher, M.I., El Yacoubi, M.A.: Two-stage filtering scheme for sparse representation based interest point matching for person re-identification. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 345–356. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25903-1_30 CrossRefGoogle Scholar
  10. 10.
    Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: International Conference on Computer Vision and Pattern Recognition, pp. 2197–2206 (2015)Google Scholar
  11. 11.
    Liu, C., Loy, C.C., Gong, S., Wang, G.: POP: person re-identification post-rank optimisation. In: International Conference on Computer Vision, pp. 441–448 (2013)Google Scholar
  12. 12.
    Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis. Comput. 32(6), 379–390 (2014)CrossRefGoogle Scholar
  13. 13.
    Metternich, M.J., Worring, M.: Track based relevance feedback for tracing persons in surveillance videos. Comput. Vis. Image Underst. 117(3), 229–237 (2013)CrossRefGoogle Scholar
  14. 14.
    Pudil, P., Novovicova, J., Blaha, S., Kittler, J.: Multistage pattern recognition with reject option. In: International Conference on Pattern Recognition, vol. II, pp. 92–95 (1992)Google Scholar
  15. 15.
    Satta, R., Fumera, G., Roli, F.: Fast person re-identification based on dissimilarity representations. Pattern Recogn. Lett. 33(14), 1838–1848 (2012)CrossRefGoogle Scholar
  16. 16.
    Satta, R., Fumera, G., Roli, F., Cristani, M., Murino, V.: A multiple component matching framework for person re-identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 140–149. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24088-1_15 CrossRefGoogle Scholar
  17. 17.
    Sperduti, A.: Theoretical and experimental analysis of a two-stage system for classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 893–904 (2002)CrossRefGoogle Scholar
  18. 18.
    Trapeznikov, K., Saligrama, V., Castañón, D.: Multi-stage classifier design. Mach. Learn. 92(2–3), 479–502 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511 (2001)Google Scholar
  20. 20.
    Wang, Z., Hu, R., Liang, C., Leng, Q., Sun, K.: Region-based interactive ranking optimization for person re-identification. In: Ooi, W.T., Snoek, C.G.M., Tan, H.K., Ho, C.-K., Huet, B., Ngo, C.-W. (eds.) PCM 2014. LNCS, vol. 8879, pp. 1–10. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-13168-9_1 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringUniversity of Cagliari Piazza d’ArmiCagliariItaly

Personalised recommendations