Thermodynamic Characterization of Temporal Networks

  • Giorgia MinelloEmail author
  • Andrea Torsello
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


Time-evolving networks have proven to be an efficient and effective means of concisely characterising the behaviour of complex systems over time. However, the analysis of such networks and the identification of the underlying dynamical process has proven to be a challenging problem, particularly trying to model the large-scale properties of graphs. In this paper we present a novel method to characterize the behaviour of the evolving systems based on a thermodynamic framework for graphs. This framework aims at relating the major structural changes in time evolving networks to thermodynamic phase transitions. This is achieved by relating the thermodynamics variables to macroscopic changes in network topology. First, by considering a recent quantum-mechanical characterization of the structure of a network, we derive the network entropy. Then we adopt a Schrödinger picture of the dynamics of the network, in order to obtain a measure of energy exchange through the estimation of a hidden time-varying Hamiltonian from the data. Experimental evaluations on real-world data demonstrate how the estimation of this time-varying energy operator strongly characterizes the different states of time evolving networks.


Complex networks Quantum thermodynamics Graphs 


  1. 1.
    Arbeitman, M.N., Furlong, E.E., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Krasnow, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of drosophila melanogaster. Science 297(5590), 2270–2275 (2002)CrossRefGoogle Scholar
  2. 2.
    Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206 (2012)CrossRefGoogle Scholar
  3. 3.
    Estrada, E.: The Structure of Complex Networks: Theory and Applications. OUP, Oxford (2011)CrossRefGoogle Scholar
  4. 4.
    Estrada, E.: Introduction to complex networks: structure and dynamics. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds.) Evolutionary Equations with Applications in Natural Sciences. LNM, vol. 2126, pp. 93–131. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-11322-7_3 Google Scholar
  5. 5.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huang, K.: Statistical Mechanics. Wiley, New York (1987)zbMATHGoogle Scholar
  7. 7.
    Javarone, M.A., Armano, G.: Quantum-classical transitions in complex networks. J. Stat. Mech.: Theor. Exp. 2013(04), P04019 (2013)Google Scholar
  8. 8.
    Mikulecky, D.C.: Network thermodynamics and complexity: a transition to relational systems theory. Comput. Chem. 25(4), 369–391 (2001)CrossRefGoogle Scholar
  9. 9.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Passerini, F., Severini, S.: Quantifying complexity in networks: the Von Neumann entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)CrossRefGoogle Scholar
  12. 12.
    Peron, T.D., Rodrigues, F.A.: Collective behavior in financial markets. EPL (Europhys. Lett.) 96(4), 48004 (2011)CrossRefGoogle Scholar
  13. 13.
    Song, L., Kolar, M., Xing, E.P.: Keller: estimating time-varying interactions between genes. Bioinformatics 25(12), i128–i136 (2009)CrossRefGoogle Scholar
  14. 14.
    Ye, C., Comin, C.H., Peron, T.K.D., Silva, F.N., Rodrigues, F.A., Costa, L.D.F., Torsello, A., Hancock, E.R.: Thermodynamic characterization of networks using graph polynomials. Phys. Rev. E 92(3), 032810 (2015)CrossRefGoogle Scholar
  15. 15.
    Ye, C., Torsello, A., Wilson, R.C., Hancock, E.R.: Thermodynamics of time evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 315–324. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18224-7_31 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giorgia Minello
    • 1
    Email author
  • Andrea Torsello
    • 1
  • Edwin R. Hancock
    • 2
  1. 1.DAISUniversità Ca’ Foscari VeneziaVeniceItaly
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations