Advertisement

Detecting Ellipses in Elongated Shapes Using the Thickness Profile

  • Aysylu GabdulkhakovaEmail author
  • Walter G. Kropatsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Abstract

This paper presents a method that detects elliptical parts of a given elongated shape. For this purpose, first, the shape is represented by its skeleton. In case of branches, the skeleton is partitioned into a set of lines/curves. Second, the ellipse parameters are estimated using the thickness profile along each line/curve, and the properties of its first and second derivatives. The proposed method requires no prior information about the model, number of ellipses and their parameter values. The detected ellipses are then used in our second proposed approach for ellipse-based shape description. It can be applied for analysing motion and deformation of biological objects like roots, worms, and diatoms.

Keywords

Shape analysis Shape description Ellipse detection 

References

  1. 1.
    Aigerman, N., Poranne, R., Lipman, Y.: Lifted bijections for low distortion surface mappings. ACM Trans. Graph. 33(4), 69:1–69:12 (2014)CrossRefGoogle Scholar
  2. 2.
    Bai, X., Sun, C., Zhou, F.: Splitting touching cells based on concave points and ellipse fitting. Pattern Recogn. 42(11), 2434–2446 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press (1967)Google Scholar
  4. 4.
    Chien, C.-F., Cheng, Y.-C., Lin, T.-T.: Robust ellipse detection based on hierarchical image pyramid and hough transform. J. Opt. Soc. Am. A 28(4), 581–589 (2011)CrossRefGoogle Scholar
  5. 5.
    Cicconet, M., Gunsalus, K., Geiger, D., Werman, M.: Ellipses from triangles. In: IEEE International Conference on Image Processing, pp. 3626–3630. IEEE (2014)Google Scholar
  6. 6.
    Coeurjolly, D.: Fast and accurate approximation of the Euclidean opening function in arbitrary dimension. In: IEEE International Conference on Pattern Recognition, pp. 229–232. IEEE Computer Society (2010)Google Scholar
  7. 7.
    Davis, L.M., Theobald, B.-J., Bagnall, A.: Automated bone age assessment using feature extraction. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 43–51. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32639-4_6 CrossRefGoogle Scholar
  8. 8.
    Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  9. 9.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison Wesley, Boston (1992)Google Scholar
  10. 10.
    Hoffman, D., Richards, W.: Parts of recognition. Cognition 18(1), 65–96 (1984)CrossRefGoogle Scholar
  11. 11.
    Jaklic, A., Leonardis, A., Solina, F.: Segmentation and Recovery of Superquadrics, vol. 20. Springer Science & Business Media, Berlin (2000)zbMATHGoogle Scholar
  12. 12.
    Jiang, T., Dong, Z., Ma, C., Wang, Y.: Toward perception-based shape decomposition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7725, pp. 188–201. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-37444-9_15 CrossRefGoogle Scholar
  13. 13.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, E.: CPR-curved planar reformation. In: Proceedings of the IEEE Visualization, pp. 37–44 (2002)Google Scholar
  14. 14.
    Kemp, M., Da Xu, R.Y.: Geometrically-constrained balloon fitting for multiple connected ellipses. Pattern Recogn. 48(7), 2198–2208 (2015)CrossRefGoogle Scholar
  15. 15.
    Kim, E., Haseyama, M., Kitajima, H.: Fast and robust ellipse extraction from complicated images. In: Proceedings of IEEE Information Technology and Applications (2002)Google Scholar
  16. 16.
    Lei, Y., Wong, K.C.: Ellipse detection based on symmetry. Pattern Recogn. Lett. 20(1), 41–47 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, Z.-Y., Qiao, H.: Multiple ellipses detection in noisy environments: a hierarchical approach. Pattern Recogn. 42(11), 2421–2433 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mai, F., Hung, Y.S., Zhong, H., Sze, W.F.: A hierarchical approach for fast and robust ellipse extraction. Pattern Recogn. 41(8), 2512–2524 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Maini, E.S.: Enhanced direct least square fitting of ellipses. Int. J. Pattern Recogn. Artif. Intell. 20(06), 939–953 (2006)CrossRefGoogle Scholar
  20. 20.
    McLaughlin, R.: Randomized hough transform: improved ellipse detection with comparison. Pattern Recogn. Lett. 19(3), 299–305 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 63–69 (1992)Google Scholar
  22. 22.
    Prasad, D., Leung, M., Cho, S.-Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, A.: Axial representations of shape. Comput. Vis. Graph. Image Process. 33(2), 156–173 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rosin, P.: Ellipse fitting by accumulating five-point fits. Pattern Recogn. Lett. 14(8), 661–669 (1993)CrossRefGoogle Scholar
  25. 25.
    Saha, P., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)CrossRefGoogle Scholar
  26. 26.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  27. 27.
    Talbot, H.: Elliptical distance transforms and applications. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 320–330. Springer, Heidelberg (2006). doi: 10.1007/11907350_27 CrossRefGoogle Scholar
  28. 28.
    Wong, Y., Lin, S., Ren, T., Kwok, N.: A survey on ellipse detection methods. In: IEEE International Symposium on Industrial Electronics, pp. 1105–1110 (2012)Google Scholar
  29. 29.
    Xu, D., Yi, R., Kemp, M.: Fitting multiple connected ellipses to an image silhouette hierarchically. IEEE Trans. Image Process. 19(7), 1673–1682 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Pattern Recognition and Image Processing GroupTU WienViennaAustria

Personalised recommendations