Multiple Structure Recovery via Probabilistic Biclustering

  • M. DenittoEmail author
  • L. Magri
  • A. Farinelli
  • A. Fusiello
  • M. Bicego
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


Multiple Structure Recovery (MSR) represents an important and challenging problem in the field of Computer Vision and Pattern Recognition. Recent approaches to MSR advocate the use of clustering techniques. In this paper we propose an alternative method which investigates the usage of biclustering in MSR scenario. The main idea behind the use of biclustering approaches to MSR is to isolate subsets of points that behave “coherently” in a subset of models/structures. Specifically, we adopt a recent generative biclustering algorithm and we test the approach on a widely accepted MSR benchmark. The results show that biclustering techniques favorably compares with state-of-the-art clustering methods.


Subspace Cluster Fundamental Matrice Preference Matrix Motion Segmentation Feature Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bishop, C.M.: Pattern recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103 (2000)Google Scholar
  3. 3.
    Chin, T., Wang, H., Suter, D.: Robust fitting of multiple structures: the statistical learning approach. In: International Conference on Computer Vision, pp. 413–420 (2009)Google Scholar
  4. 4.
    Denitto, M., Farinelli, A., Bicego, M.: Biclustering gene expressions using factor graphs and the max-sum algorithm. In: Proceedings of 24th International Conference on Artificial Intelligence, pp. 925–931. AAAI Press (2015)Google Scholar
  5. 5.
    Denitto, M., Farinelli, A., Franco, G., Bicego, M.: A binary factor graph model for biclustering. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 394–403. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44415-3_40 Google Scholar
  6. 6.
    Dolnicar, S., Kaiser, S., Lazarevski, K., Leisch, F.: Biclustering overcoming data dimensionality problems in market segmentation. J. Travel Res. 51(1), 41–49 (2012)CrossRefGoogle Scholar
  7. 7.
    Fitzgibbon, A.W., Zisserman, A.: Multibody structure and motion: 3-D reconstruction of independently moving objects. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 891–906. Springer, Heidelberg (2000). doi: 10.1007/3-540-45054-8_58 CrossRefGoogle Scholar
  8. 8.
    Flores, J.L., Inza, I., Larrañaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Prog. Biomed. 112(3), 367–397 (2013)CrossRefGoogle Scholar
  9. 9.
    Girolami, M.: A variational method for learning sparse and overcomplete representations. Neural Comput. 13(11), 2517–2532 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Häne, C., Zach, C., Zeisl, B., Pollefeys, M.: A patch prior for dense 3D reconstruction in man-made environments. In: 2012 2nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 563–570. IEEE (2012)Google Scholar
  11. 11.
    Henriques, R., Antunes, C., Madeira, S.C.: A structured view on pattern mining-based biclustering. Pattern Recogn. 48(12), 3941–3958 (2015)CrossRefGoogle Scholar
  12. 12.
    Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W., et al.: Fabia: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)CrossRefGoogle Scholar
  13. 13.
    Jain, S., Govindu, V.M.: Efficient higher-order clustering on the Grassmann manifold (2013)Google Scholar
  14. 14.
    Kaytoue, M., Codocedo, V., Buzmakov, A., Baixeries, J., Kuznetsov, S.O., Napoli, A.: Pattern structures and concept lattices for data mining and knowledge processing. In: Bifet, A., May, M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou, M. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 227–231. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23461-8_19 CrossRefGoogle Scholar
  15. 15.
    Kuang, D., Yun, S., Park, H.: SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Glob. Optim. 1–30 (2014)Google Scholar
  16. 16.
    Lee, M., Shen, H., Huang, J.Z., Marron, J.: Biclustering via sparse singular value decomposition. Biometrics 66(4), 1087–1095 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1, 24–44 (2004)CrossRefGoogle Scholar
  18. 18.
    Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of J-linkage for multi-model fitting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3954–3961 (2014)Google Scholar
  19. 19.
    Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: Xie, X., Tam, Jones, M.W., Tqam, G.K.L. (eds.) Proceedings of British Machine Vision Conference (BMVC), pp. 20.1–20.12. BMVA Press, September 2015Google Scholar
  20. 20.
    Mitra, S., Banka, H., Pal, S.K.: A MOE framework for biclustering of microarray data. In: 18th International Conference on Pattern Recognition, 2006, ICPR 2006, vol. 1, pp. 1154–1157. IEEE (2006)Google Scholar
  21. 21.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)CrossRefGoogle Scholar
  22. 22.
    Oghabian, A., Kilpinen, S., Hautaniemi, S., Czeizler, E.: Biclustering methods: biological relevance and application in gene expression analysis. PloS ONE 9(3), e90801 (2014)CrossRefGoogle Scholar
  23. 23.
    Ozden, K.E., Schindler, K., Van Gool, L.: Multibody structure-from-motion in practice. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1134–1141 (2010)CrossRefGoogle Scholar
  24. 24.
    Pekalska, E., Duin, R.P.: The Dissimilarity Representation for Pattern Recognition: Foundations And Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing, Singapore (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. Pattern Anal. Mach. Intell. 36(8), 1658–1671 (2014)CrossRefGoogle Scholar
  26. 26.
    Soltanolkotabi, M., Elhamifar, E., Candès, E.J.: Robust subspace clustering. Ann. Stat. 42(2), 669–699 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stewart, C.V.: Bias in robust estimation caused by discontinuities and multiple structures. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 818–833 (1997)CrossRefGoogle Scholar
  28. 28.
    Tepper, M., Sapiro, G.: A biclustering framework for consensus problems. SIAM J. Imaging Sci. 7(4), 2488–2525 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: European Conference on Computer Vision (2008)Google Scholar
  30. 30.
    Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88682-2_41 CrossRefGoogle Scholar
  31. 31.
    Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31(10), 756–770 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhang, W., Kosecká, J.: Nonparametric estimation of multiple structures with outliers. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2005-2006. LNCS, vol. 4358, pp. 60–74. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70932-9_5 CrossRefGoogle Scholar
  33. 33.
    Zhang, Z.Y., Li, T., Ding, C., Ren, X.W., Zhang, X.S.: Binary matrix factorization for analyzing gene expression data. Data Min. Knowl. Disc. 20(1), 28–52 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • M. Denitto
    • 1
    Email author
  • L. Magri
    • 1
  • A. Farinelli
    • 1
  • A. Fusiello
    • 2
  • M. Bicego
    • 1
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.DPIAUniversity of UdineUdineItaly

Personalised recommendations