Advertisement

fMRI Activation Network Analysis Using Bose-Einstein Entropy

  • Jianjia WangEmail author
  • Richard C. Wilson
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Abstract

In this paper, we present a novel method for characterizing networks using the entropy associated with bosonic particles in thermal equilibrium with a heat-bath. According to this analogy, the normalized Laplacian plays the role of Hamiltonian operator, and the associated energy states are populated according to Bose-Einstein statistics. This model is subject to thermal agitation by the heat reservoir. The physics of the system can be captured by using a partition function defined over the normalized Laplacian eigenvalues. Various global thermodynamic characterizations of the network including its entropy and energy then can be computed from the derivative of corresponding partition function with respect to temperature. We explore whether the resulting entropy can be used to construct an effective information theoretic graph-kernel for the purposes of classifying different types of graph or network structure. To this end, we construct a Jensen-Shannon kernel using the Bose-Einstein entropy for a sample of networks, and then apply kernel principle components analysis (kPCA) to map graphs into low dimensional feature space. We apply the resulting method to classify fMRI activation networks from patients with suspected Alzheimer disease.

Keywords

Bose-Einstein statistics Network entropy Jensen-Shannon divergence 

References

  1. 1.
    Kang, U., Tong, H.H., Sun, J.M.: Fast random walk graph kernel. In: Proceedings of SIAM International Conference on Data Mining (2012)Google Scholar
  2. 2.
    Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of 19th International Conference on Machine Learning (2002)Google Scholar
  3. 3.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: International Conference on Machine Learning (2003)Google Scholar
  4. 4.
    Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of IEEE International Conference on Data Mining (2005)Google Scholar
  5. 5.
    Bai, L., Hancock, E.R.: Graph kernels from the Jensen-Shannon divergence. J. Math. Imaging Vis. 47, 60–69 (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Torsello, A., Rossi, L.: Supervised learning of graph structure. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 117–132. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24471-1_9 CrossRefGoogle Scholar
  7. 7.
    Bianconi, G., Rahmede, C., Wu, Z.: Complex Quantum Network Geometries: Evolution and Phase Transitions (2015). arxiv:1503.04739v2
  8. 8.
    Bianconi, G., Barabasi, A.L.: Bose-Einstein condensation in complex network. Phys. Rev. Lett. 86, 5632–5635 (2001)CrossRefGoogle Scholar
  9. 9.
    Bianconi, G.: Supersymmetric multiplex networks described by coupled Bose and Fermi statistics. Phys. Rev. E 91, 012810 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). doi: 10.1007/BFb0020217 Google Scholar
  11. 11.
    Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent Technol. Syst. 1, 58–67 (2008)CrossRefGoogle Scholar
  12. 12.
    Chung, F.: Spectral graph theory. In: CBMS Regional Conference Series in Mathematics, no. 92 (1997)Google Scholar
  13. 13.
    Han, L., Hancock, E., Wilson, R.: Characterizing graphs using approximate von Neumann entropy. Pattern Recogn. Lett. 33, 1958–1967 (2012)CrossRefGoogle Scholar
  14. 14.
    Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q., Figueiredo, M.A.T.: Nonextensive information theoretic kernels on measures. J. Mach. Learn. Res. 10, 935–975 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    fMRI Image Data Alzheimer’s Disease Neuroimaging Institute (ADNI). http://adni.loni.usc.edu/

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jianjia Wang
    • 1
    Email author
  • Richard C. Wilson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations