Advertisement

Graph Entropy from Closed Walk and Cycle Functionals

  • Furqan AzizEmail author
  • Edwin R. Hancock
  • Richard C. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Abstract

This paper presents an informational functional that can be used to characterise the entropy of a graph or network structure, using closed random walks and cycles. The work commences from Dehmer’s information functional, that characterises networks at the vertex level, and extends this to structures which capture the correlation of vertices, using walk and cycle structures. The resulting entropies are applied to synthetic networks and to network time series. Here they prove effective in discriminating between different types of network structure, and detecting changes in the structure of networks with time.

Keywords

Graph entropy Random walks Ihara coefficients 

References

  1. 1.
    Dehmer, M.: Information processing in complex networks: graph entropy and information functionals. Appl. Math. Comput. 201, 82–94 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Estrada, E.: Characterization of 3D molecular structure. Chem. Phys. Lett. 319(5–6), 713–718 (2000)CrossRefGoogle Scholar
  3. 3.
    Körner, J.: Coding of an information source having ambiguous alphabet and the entropy of graphs. In: 6th Prague Conference on Information Theory (1973)Google Scholar
  4. 4.
    Kolmogorov, A.N.: Three approaches to the definition of the concept ? Quantity of information? Probl. Peredachi Informatsii 1(1), 3–11 (1965)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. J. ACM 13(4), 547–569 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Scott, G., Storm, C.: The coefficients of the Ihara zeta function. Involve - J. Math. 1(2), 217–233 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 977–989 (2013)CrossRefGoogle Scholar
  8. 8.
    Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via Ihara coefficients. IEEE Trans. Neural Netw. 22(2), 233–245 (2010)Google Scholar
  9. 9.
    Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206 (2012)CrossRefGoogle Scholar
  10. 10.
    Erdõs, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  12. 12.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3, 717–797 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kotani, M., Sunada, T.: Zeta function of finite graphs. J. Math. Univ. Tokyo 7(1), 7–25 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Delaunay, B.: Sur la sphre vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)zbMATHGoogle Scholar
  16. 16.
    Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recogn. 12, 261–268 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Zool. 12, 205–222 (1969)Google Scholar
  19. 19.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, Manchester, UK, pp. 147–151 (1988)Google Scholar
  20. 20.
    Nayar, S.K., Nene, S.A., Murase, H.: Columbia object image library (coil 100), Department of Comp. Science, Columbia University, Technical report, CUCS-006-96 (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Furqan Aziz
    • 1
    Email author
  • Edwin R. Hancock
    • 2
  • Richard C. Wilson
    • 2
  1. 1.Department of Computer ScienceIM—SciencesPeshawarPakistan
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations