Correlation Network Evolution Using Mean Reversion Autoregression

  • Cheng YeEmail author
  • Richard C. Wilson
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


In this paper, we present a new method for modeling time-evolving correlation networks, using a Mean Reversion Autoregressive Model, and apply this to stock market data. The work is motivated by the assumption that the price and return of a stock eventually regresses back towards their mean or average. This allows us to model the stock correlation time-series as an autoregressive process with a mean reversion term. Traditionally, the mean is computed as the arithmetic average of the stock correlations. However, this approach does not generalize the data well. In our analysis we utilize a recently developed generative probabilistic model for network structure to summarize the underlying structure of the time-varying networks. In this way we obtain a more meaningful mean reversion term. We show experimentally that the dynamic network model can be used to recover detailed statistical properties of the original network data. More importantly, it also suggests that the model is effective in analyzing the predictability of stock correlation networks.


Time-evolving correlation network Mean Reversion Autoregressive Model Generative probabilistic model 


  1. 1.
    Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.N.: A tool for filtering information in complex systems. Proc. Natl. Acad. Sci. 102, 10421–10426 (2005)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.L.: Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85(24), 5234–5237 (2000)CrossRefGoogle Scholar
  4. 4.
    Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems and propagation. In: Proceedings of Royal Society A, vol. 466, pp. 753–770 (2009)Google Scholar
  5. 5.
    Estrada, E., Hatano, N.: Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439, 247–251 (2007)CrossRefGoogle Scholar
  6. 6.
    Christie, A.A.: The stochastic behavior of common stock variances: value, leverage and interest rate effects. J. Financ. Econ. 10, 407–432 (1982)CrossRefGoogle Scholar
  7. 7.
    Ferenstein, E., Gasowski, M.: Modelling stock returns with AR-GARCH processes. Stat. Oper. Res. Trans. 28(1), 55–68 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1120–1136 (2001)CrossRefGoogle Scholar
  9. 9.
    Han, L., Wilson, R., Hancock, E.: Generative graph prototypes from information theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)CrossRefGoogle Scholar
  10. 10.
    Han, L., Escolano, F., Hancock, E., Wilson, R.: Graph characterizations from von neumann entropy. Pattern Recogn. Lett. 33, 1958–1967 (2012)CrossRefGoogle Scholar
  11. 11.
    Ye, C., Wilson, R.C., Comin, C.H., Costa, L.D.F., Hancock, E.R.: Approximate von neumann entropy for directed graphs. Phys. Rev. E 89, 052804 (2014)CrossRefGoogle Scholar
  12. 12.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)CrossRefGoogle Scholar
  13. 13.
    Silva, F.N., Comin, C.H., Peron, T.K.D., Rodrigues, F.A., Ye, C., Wilson, R.C., Hancock, E.R., Costa, L.D.F.: On the modular dynamics of financial market networks (2015). arXiv e-prints arXiv:1501.05040
  14. 14.
    Battiston, S., Caldarelli, G.: Systemic risk in financial networks. J. Financ. Manag. Mark. Inst. 1, 129–154 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Cheng Ye
    • 1
    Email author
  • Richard C. Wilson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations