Advertisement

Edge Centrality via the Holevo Quantity

  • Joshua Lockhart
  • Giorgia Minello
  • Luca RossiEmail author
  • Simone Severini
  • Andrea Torsello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Abstract

In the study of complex networks, vertex centrality measures are used to identify the most important vertices within a graph. A related problem is that of measuring the centrality of an edge. In this paper, we propose a novel edge centrality index rooted in quantum information. More specifically, we measure the importance of an edge in terms of the contribution that it gives to the Von Neumann entropy of the graph. We show that this can be computed in terms of the Holevo quantity, a well known quantum information theoretical measure. While computing the Von Neumann entropy and hence the Holevo quantity requires computing the spectrum of the graph Laplacian, we show how to obtain a simplified measure through a quadratic approximation of the Shannon entropy. This in turns shows that the proposed centrality measure is strongly correlated with the negative degree centrality on the line graph. We evaluate our centrality measure through an extensive set of experiments on real-world as well as synthetic networks, and we compare it against commonly used alternative measures.

Keywords

Edge centrality Complex networks Holevo quantity Quantum information 

Notes

Acknowledgments

Simone Severini was supported by the Royal Society and EPSRC.

References

  1. 1.
    de Beaudrap, N., Giovannetti, V., Severini, S., Wilson, R.: Interpreting the Von Neumann entropy of graph laplacians, and coentropic graphs. Panor. Math. Pure Appl. 658, 227 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987)CrossRefGoogle Scholar
  3. 3.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Estrada, E.: The Structure of Complex Networks. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  5. 5.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  6. 6.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)CrossRefGoogle Scholar
  7. 7.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98(8), 4569 (2001)CrossRefGoogle Scholar
  8. 8.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  9. 9.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31955-9_3 CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)CrossRefGoogle Scholar
  11. 11.
    Newman, M.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64(1), 016131 (2001)CrossRefGoogle Scholar
  12. 12.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Passerini, F., Severini, S.: Quantifying complexity in networks: the Von Neumann entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)CrossRefGoogle Scholar
  14. 14.
    Rossi, L., Torsello, A., Hancock, E.R.: Node centrality for continuous-time quantum walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 103–112. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44415-3_11 Google Scholar
  15. 15.
    Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Phys. Rev. E 91(2), 022815 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806 (2013)CrossRefGoogle Scholar
  17. 17.
    Sporns, O.: Network analysis, complexity, and brain function. Complexity 8(1), 56–60 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Joshua Lockhart
    • 1
  • Giorgia Minello
    • 2
  • Luca Rossi
    • 3
    Email author
  • Simone Severini
    • 1
  • Andrea Torsello
    • 2
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.DAISUniversità Ca’ Foscari VeneziaVeniceItaly
  3. 3.School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations