GriMa: A Grid Mining Algorithm for Bag-of-Grid-Based Classification

  • Romain Deville
  • Elisa FromontEmail author
  • Baptiste Jeudy
  • Christine Solnon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


General-purpose exhaustive graph mining algorithms have seldom been used in real life contexts due to the high complexity of the process that is mostly based on costly isomorphism tests and countless expansion possibilities. In this paper, we explain how to exploit grid-based representations of problems to efficiently extract frequent grid subgraphs and create Bag-of-Grids which can be used as new features for classification purposes. We provide an efficient grid mining algorithm called GriMA which is designed to scale to large amount of data. We apply our algorithm on image classification problems where typical Bag-of-Visual-Words-based techniques are used. However, those techniques make use of limited spatial information in the image which could be beneficial to obtain more discriminative features. Experiments on different datasets show that our algorithm is efficient and that adding the structure may greatly help the image classification process.


Support Vector Machine Visual Word Frequent Pattern Image Classification Mining Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the ANR project SoLStiCe (ANR-13-BS02-0002-01).


  1. 1.
    Arimura, H., Uno, T., Shimozono, S.: Time and space efficient discovery of maximal geometric graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 42–55. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75488-6_6 CrossRefGoogle Scholar
  2. 2.
    Brandao Da Silva, F., Goldenstein, S., Tabbone, S., Da Silva Torres, R.: Image classification based on bag of visual graphs. In: IEEE SPS, pp. 4312–4316 (2013)Google Scholar
  3. 3.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Google Scholar
  4. 4.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, pp. 76.1–76.12 (2011)Google Scholar
  5. 5.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)Google Scholar
  6. 6.
    Cook, D., Holder, L.: Mining Graph Data. Wiley, Hoboken (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV, pp. 1–22 (2004)Google Scholar
  8. 8.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: IEEE CVPR Workshop of Generative Model Based Vision (2004)Google Scholar
  9. 9.
    Fernando, B., Fromont, É., Tuytelaars, T.: Mining mid-level features for image classification. IJCV 108(3), 186–203 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hogeweg, P.: Cellular automata as a paradigm for ecological modelling. Appl. Math. Comput. 27, 81–100 (1988)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms. KER 28, 75–105 (2013)Google Scholar
  12. 12.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Marinescu-Ghemeci, R.: Maximum induced matchings in grids. In: Migdalas, A., Sifaleras, A., Georgiadis, C.K., Papathanasiou, J., Stiakakis, E. (eds.) Optimization Theory, Decision Making, and Operations Research Applications. Springer Proceedings in Mathematics & Statistics, vol. 31, pp. 177–187. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: ICVGIP, pp. 722–729 (2008)Google Scholar
  16. 16.
    Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). doi: 10.1007/11744085_38 CrossRefGoogle Scholar
  17. 17.
    Nowozin, S., Tsuda, K., Uno, T., Kudo, T., Bakir, G.: Weighted substructure mining for image analysis. In: IEEE CVPR, pp. 1–8 (2007)Google Scholar
  18. 18.
    Odone, F., Barla, A., Verri, A.: Building kernels from binary strings for image matching. IEEE Trans. Image Process. 14(2), 169–180 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ozdemir, B., Aksoy, S.: Image classification using subgraph histogram representation. In: ICPR, pp. 1112–1115 (2010)Google Scholar
  20. 20.
    Prado, A., Jeudy, B., Fromont, E., Diot, F.: Mining spatiotemporal patterns in dynamic plane graphs. IDA 17, 71–92 (2013)Google Scholar
  21. 21.
    Samuel, É., de la Higuera, C., Janodet, J.-C.: Extracting plane graphs from images. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 6218, pp. 233–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Brandão Silva, F., Tabbone, S., Torres, R.: BoG: a new approach for graph matching. In: ICPR, pp. 82–87 (2014)Google Scholar
  23. 23.
    Voravuthikunchai, W., Crémilleux, B., Jurie, F.: Histograms of pattern sets for image classification and object recognition. In: CVPR, pp. 1–8 (2014)Google Scholar
  24. 24.
    Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: ICDM, pp. 721–724 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Romain Deville
    • 1
    • 2
  • Elisa Fromont
    • 1
    Email author
  • Baptiste Jeudy
    • 1
  • Christine Solnon
    • 2
  1. 1.Université de Lyon, UJM, Laboratoire Hubert Curien (CNRS, UJM, IOGS) UMR 5516Saint-EtienneFrance
  2. 2.Université de Lyon, INSA-Lyon, LIRIS, UMR5205LyonFrance

Personalised recommendations