On the Relevance of Local Neighbourhoods for Greedy Graph Edit Distance

  • Xavier CortésEmail author
  • Francesc Serratosa
  • Kaspar Riesen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)


Approximation of graph edit distance based on bipartite graph matching emerged to an important model for distance based graph classification. However, one of the drawbacks of this particular approximation is its cubic runtime with respect to the number of nodes of the graphs. In fact, this runtime restricts the applicability of bipartite graph matching to graphs of rather small size. Recently, a new approximation for graph edit distance using greedy algorithms (rather than optimal bipartite algorithms) has been proposed. This novel algorithm reduces the computational complexity to quadratic order. In another line of research it has been shown that the definition of local neighbourhoods plays a crucial role in bipartite graph matching. These neighbourhoods define the local substructures of the graphs which are eventually assigned to each other. In the present paper we demonstrate that the type of local neighbourhood and in particular the distance model defined on them is also highly relevant for graph classification using greedy graph edit distance.


Graph edit distance Graph classification Greedy assignment Bipartite graph matching 


  1. 1.
    Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based representations and techniques for image processing and image analysis. Pattern Recogn. 35(3), 639–650 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artfi. Intell. 18(3), 265–298 (2004)CrossRefGoogle Scholar
  3. 3.
    Vento, M.: A one hour trip in the world of graphs, looking at the papers of the last ten years. In: Artner, N.M., Haxhimusa, Y., Jiang, X., Kropatsch, W.G. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 28(1), 1450001 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sanroma, G., Penate-Sanchez, A., Alquezar, R., Serratosa, F., Moreno-Noguer, F., Andrade-Cetto, J., Gonzalez, M.A.: MSClique: multiple structure discovery through the maximum weighted clique problem. PLoS ONE 11(1), e0145846 (2016)CrossRefGoogle Scholar
  6. 6.
    Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(1), 47–56 (2005)CrossRefGoogle Scholar
  7. 7.
    Mahé, P., Ueda, N., Akutsu, T., Perret, J., Vert, J.: Graph kernels for molecular structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model. 45(4), 939–951 (2005)CrossRefGoogle Scholar
  8. 8.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering. In: Caelli, T.M., Amin, A., Duin, R.P., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 83–93. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)CrossRefGoogle Scholar
  10. 10.
    Kosinov, S., Caelli, T.M.: Inexact multisubgraph matching using graph eigenspace and clustering models. In: Caelli, T.M., Amin, A., Duin, R.P., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 133–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  12. 12.
    Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions. Pattern Recogn. 39(1), 22–34 (2006)CrossRefGoogle Scholar
  13. 13.
    Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)Google Scholar
  14. 14.
    Borgwardt, K., Petri, T., Kriegel, H.-P., Vishwanathan, S.: An efficient sampling scheme for comparison of large graphs. In: International Workshop on Mining and Learning with Graphs (2007)Google Scholar
  15. 15.
    Vishwanathan, S.V.N., Borgwardt, K., Schraudolph, N.N.: Fast computation of graph kernels. In: Annual Conference on Neural Information Processing Systems, pp. 1449–1456. MIT Press (2006)Google Scholar
  16. 16.
    Gaüzère, B., Brun, L., Villemin, D.: Two new graph kernels and applications to chemoinformatics. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 112–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Gauzere, B., Grenier, P.A., Brun, L., Villemin, D.: Treelet kernel incorporating cyclic, stereo and inter pattern information in chemoinformatics. Pattern Recogn. 48(2), 356–367 (2015)CrossRefGoogle Scholar
  18. 18.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1, 245–253 (1983)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. (Part B) 13(3), 353–363 (1983)CrossRefzbMATHGoogle Scholar
  20. 20.
    Solé, A., Serratosa, F., Sanfeliu, A.: On the graph edit distance cost: properties and applications. Int. J. Pattern Recogn. Artif. Intell. 26(5), 1260004 [21 p.] (2012)Google Scholar
  21. 21.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)CrossRefGoogle Scholar
  22. 22.
    Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett. 45, 244–250 (2014)CrossRefGoogle Scholar
  23. 23.
    Serratosa, F.: Computation of graph edit distance: reasoning about optimality and speed-up. Image Vis. Comput. 40, 38–48 (2015)CrossRefGoogle Scholar
  24. 24.
    Serratosa, F.: Speeding up fast bipartite graph matching trough a new cost matrix. Int. J. Pattern Recogn. Artif. Intell. 29(2),1550010 [17 p.] (2015)Google Scholar
  25. 25.
    Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assessing the assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)CrossRefGoogle Scholar
  26. 26.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit distance in quadratic time. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 3–12. Springer, Heidelberg (2015)Google Scholar
  28. 28.
    Serratosa, F., Cortés, X.: Interactive graph-matching using active query strategies. Pattern Recogn. 48(4), 1364–1373 (2015)CrossRefGoogle Scholar
  29. 29.
    Cortés, X., Serratosa, F.: An interactive method for the image alignment problem based on partially supervised correspondence. Expert Syst. Appl. 42(1), 179–192 (2015)CrossRefGoogle Scholar
  30. 30.
    Sanromà, G., Alquézar, R., Serratosa, F., Herrera, B.: Smooth point-set registration using neighbouring constraints. Pattern Recogn. Lett. 33, 2029–2037 (2012)CrossRefGoogle Scholar
  31. 31.
    Sanromà, G., Alquézar, R., Serratosa, F.: A new graph matching method for point-set correspondence using the EM algorithm and softassign. Comput. Vis. Image Underst. 116(2), 292–304 (2012)CrossRefGoogle Scholar
  32. 32.
    Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015)CrossRefGoogle Scholar
  33. 33.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2, 83–97 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)CrossRefGoogle Scholar
  35. 35.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. Cybern. Control Theory 10, 707–710 (1966)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Peris, G., Marzal, A.: Fast cyclic edit distance computation with weighted edit costs in classification. Int. Conf. Pattern Recogn. 4, 184–187 (2002)CrossRefGoogle Scholar
  37. 37.
    Serratosa, F., Sanfeliu, A.: Signatures versus histograms: definitions, distances and algorithms. Pattern Recogn. 39(5), 921–934 (2006)CrossRefzbMATHGoogle Scholar
  38. 38.
    Serratosa, F., Sanromà, G.: A fast approximation of the earth-movers distance between multi-dimensional histograms. Int. J. Pattern Recognit. Artif. Intell. 22(8), 1539–1558 (2008)CrossRefGoogle Scholar
  39. 39.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Xavier Cortés
    • 1
    Email author
  • Francesc Serratosa
    • 1
  • Kaspar Riesen
    • 2
  1. 1.Universitat Rovira i VirgiliTarragonaSpain
  2. 2.University of Applied Sciences and Arts Northwestern SwitzerlandBaselSwitzerland

Personalised recommendations