Skip to main content

Computing EHG Signals from a Realistic 3D Uterus Model: A Method to Adapt a Planar Volume Conductor

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9978))

Abstract

Modelling the uterus is a suitable way to explore the links existing between its electrical activity and the contractile synchronization during labor. In order to compare simulated and real electrical uterine activities, it is necessary to obtain the same signals in both cases. The only real signal related to uterine activity, that can be recorded is the electrohysterogram. This paper presents a method to obtain electrohysterograms from a uterine model applied on a realistic uterine mesh, by using a volume conductor, which contains abdominal muscle, fat and skin layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young, R.C.: Myocytes, myometrium, and uterine contractions. Ann. N.Y. Acad. Sci. 1101(1), 72–84 (2007)

    Article  Google Scholar 

  2. Marque, C.K., Terrien, J., Rihana, S., Germain, G.: Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy Childbirth 7(Suppl 1), S5 (2007)

    Article  Google Scholar 

  3. Rabotti, C., Mischi, M., Beulen, L., Oei, G., Bergmans, J.W.: Modeling and identification of the electrohysterographic volume conductor by high-density electrodes. IEEE Trans. Biomed. Eng. 57(3), 519–527 (2010)

    Article  Google Scholar 

  4. Yochum, M., Laforêt, J., Marque, C.: An electro-mechanical multiscale model of uterine pregnancy contraction. Comput. Biol. Med. 77, 182–194 (2016)

    Article  Google Scholar 

  5. Laforet, J., Rabotti, C., Terrien, J., Mischi, M., Marque, C.: Toward a multiscale model of the uterine electrical activity. IEEE Trans. Biomed. Eng. 58(12), 3487–3490 (2011)

    Article  Google Scholar 

  6. Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D.: Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am. J. Physiol. Cell Physiol. 292(5), C1816–C1829 (2007)

    Article  Google Scholar 

  7. Maggio, C.D., Jennings, S.R., Robichaux, J.L., Stapor, P.C., Hyman, J.M.: A modified hai murphy model of uterine smooth muscle contraction. Bull. Math. Biol. 74(1), 143–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hai, C.-M., Murphy, R.A.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. Cell Physiol. 254(1), C99–C106 (1988)

    Google Scholar 

  9. Koenigsberger, M., Sauser, R., Lamboley, M., Bény, J.-L., Meister, J.-J.: Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys. J. 87(1), 92–104 (2004)

    Article  Google Scholar 

  10. Özkaya, N., Nordin, M., Goldsheyder, D., Leger, D.: Mechanical properties of biological tissues. In: Özkaya, N., Nordin, M., Goldsheyder, D., Leger, D. (eds.) Fundamentals of Biomechanics, pp. 221–236. Springer, New York (2012)

    Chapter  Google Scholar 

  11. Bibin, L., Anquez, J., de la Plata Alcalde, J.P., Boubekeur, T., Angelini, E.D., Bloch, I.: Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images. IEEE Trans. Biomed. Eng. 57(10), 2346–2358 (2010). http://femonum.telecom-paristech.fr/

    Article  Google Scholar 

  12. Carriou, V., Boudaoud, S., Laforet, J., Ayachi, F.S.: Fast generation model of high density surface emg signals in a cylindrical conductor volume. Comput. Biol. Med. 74, 54–68 (2016)

    Article  Google Scholar 

  13. Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., Karlsson, B.: The icelandic 16-electrode electrohysterogram database. Sci. Data 2, Article ID: 150017 (2015). doi:10.1038/sdata.2015.17

  14. Fodor, I.K.: A survey of dimension reduction techniques (2002)

    Google Scholar 

  15. Grudzinskas, J.G.: The Uterus. Cambridge University Press, New York (1994)

    Google Scholar 

  16. Mikkelsen, E., Johansen, P., Fuglsang-Frederiksen, A., Uldbjerg, N.: Electrohysterography of labor contractions: propagation velocity and direction. Acta obstetricia et gynecologica Scandinavica 92(9), 1070–1078 (2013)

    Article  Google Scholar 

  17. Diab, A.: Study of the nonlinear properties and propagation characteristics of the uterine electrical activity during pregnancy and labor. Ph.D. dissertation, Université de Technologie de Compiègne (2014)

    Google Scholar 

Download references

Acknowledgment

This work was carried out and funded in the framework of the Labex MS2T. It was supported by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Yochum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yochum, M., Riahi, P., Laforêt, J., Marque, C. (2016). Computing EHG Signals from a Realistic 3D Uterus Model: A Method to Adapt a Planar Volume Conductor. In: Huynh, VN., Inuiguchi, M., Le, B., Le, B., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2016. Lecture Notes in Computer Science(), vol 9978. Springer, Cham. https://doi.org/10.1007/978-3-319-49046-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49046-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49045-8

  • Online ISBN: 978-3-319-49046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics