Skip to main content

Interaction-induced Hyperpolarizability

  • Chapter
  • First Online:
  • 438 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

Abstract

At present, in spite of the well-known fact that the interaction of atoms and molecules leads to the changing of their multipole moments and (hyper)polarizabilities (Buckingham in Adv Chem Phys 12:107–142, 1967 [1]; Buckingham in Intermolecular interaction: from diatomic to biopolymers. Wiley, New York, pp. 1–68, 1978 [2]; Kielich in Molekularna Optyka Nieliniowa (Nonlinear molecular optics). Panstwowe Wydawnictwo Naukowe, Warszawa, Poznan, 1977[3]), only the simple moments and polarizabilities of interacting molecules such as interaction-induced dipole moments and dipole polarizabilities have widely studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.D. Buckingham, Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys. 12, 107–142 (1967)

    CAS  Google Scholar 

  2. A.D. Buckingham, in Intermolecular Interaction: From Diatomic to Biopolymers, ed. By B. Pullman (Wiley, New York, 1978), p. 1–68

    Google Scholar 

  3. S. Kielich, Molekularna Optyka Nieliniowa (Nonlinear Molecular Optics) (Panstwowe Wydawnictwo Naukowe, Warszawa, Poznan, 1977)

    Google Scholar 

  4. G. Birnbaum (ed.), Phenomena Induced by Intermolecular Interactions, NATO ASI Ser. B 127 (Plenum, New York, 1985)

    Google Scholar 

  5. L. Frommhold, Collision-Induced Absorption in Gases (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  6. G.C. Tabitz, M.N. Neumann(eds.), Collision and Interaction-Induced Spectroscopy, NATO ASI Ser. C 452 (Kluwer, Dordrecht, 1995)

    Google Scholar 

  7. A.A. Vigasin, Z. Slanina (eds.), Molecular Complexes in Earth’s Planetary, Cometary, and Interstellar Atmospheres (World Scientific, Singapore, 1998)

    Google Scholar 

  8. C. Camy-Preyt, A. Vigasin (eds.), Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO ASI, Series IV: Earth and Environmental Sciences, vol 27(Kluwer Academic Publishers, Dordrecht, 2003)

    Google Scholar 

  9. J.M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier, Amsterdam, 2008)

    Google Scholar 

  10. K.L.C. Hunt, Long-range dipoles, quadrupoles, and hyperpolarizabilities of interacting inert-gas atoms. Chem. Phys. Lett. 70(2), 336–342 (1980)

    Article  CAS  Google Scholar 

  11. K.L.C. Hunt, in Phenomena Induced by Intermolecular Interactions, ed. By G. Birnbaum. NATO ASI Ser. B 127 (Plenum, New York. 1985), pp. 263–290

    Google Scholar 

  12. A.D. Buckingham, E.P. Concannon, I.D. Hands, Hyperpolarizability of interacting atoms. J. Phys. Chem. 98(41), 10455–10459 (1994)

    Article  CAS  Google Scholar 

  13. X. Li, K.L.C. Hunt, J. Pipin, D.M. Bishop, Long-range, collision-induced hyperpolarizabilities of atoms or centrosymmetric linear molecules: theory and numerical results for pairs containing H or He. J. Chem. Phys. 105(24), 10954–10968 (1996)

    Article  CAS  Google Scholar 

  14. T. Bancewicz, Interaction-induced pair hyperpolarizabilities by spherical irreducible tensors. J. Chem. Phys. 111(16), 7440–7445 (1999)

    Article  CAS  Google Scholar 

  15. T. Bancewicz, Asymptotic multipolar expansion of collision-induced properties. J. Chem. Phys. 134(10), 104309 (2011)

    Article  Google Scholar 

  16. C.E. Dykstra, S.-Y. Liu, D.J. Malik, The hydrogen bonding influence on polarizability and hyperpolarizability. A derivative hartree-fock study of the electrical properties of hydrogen fluoride and the hydrogen fluoride dimer. J. Mol. Struct. THEOCHEM 135(1), 357–368 (1986)

    Article  Google Scholar 

  17. M.G. Papadopoulos, J. Waite, On the interaction hyperpolarisability of He2, He3 and Ne2. An ab initio study. Chem. Phys. Lett. 135(4–5), 361–366 (1987)

    Article  CAS  Google Scholar 

  18. K.S. Kim, B.J. Mhin, U.-S. Choi, K. Lee, Ab initio studies of the water dimer using large basis sets: the structure and thermodynamic energies. J. Chem. Phys. 97(9), 6649–6662 (1992)

    Article  CAS  Google Scholar 

  19. G. Maroulis, Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules. J. Chem. Phys. 113(5), 1813–1820 (2000)

    Article  CAS  Google Scholar 

  20. G. Maroulis, Computational aspects of interaction hyperpolarizability calculations. A study on H2···H2, Ne···HF, Ne···FH, He···He, Ne···Ne, Ar···Ar, and Kr···Kr. J. Phys. Chem. A 104(20), 4772–4779 (2000)

    Article  CAS  Google Scholar 

  21. G. Maroulis, A. Haskopoulos, Interaction induced (hyper)polarizability in Ne···Ar. Chem. Phys. Lett. 358(1–2), 64–70 (2002)

    Article  CAS  Google Scholar 

  22. B.-Q. Wang, Z.-R. Li, D. Wu, C.-C. Sun, Ab initio study of the interaction hyperpolarizabilities of the van der Waals complex Ar–HF. J. Mol. Struc. 620(1), 77–86 (2003). (THEOCHEM)

    Article  CAS  Google Scholar 

  23. B.-Q. Wang, Z.-R. Li, D. Wu, X.-Y. Hao, R.-J. Li, C.-C. Sun, Ab initio study of the interaction hyperpolarizabilities of H-bond dimers between two π-systems. J. Phys. Chem. A 108(13), 2464–2468 (2004)

    Article  CAS  Google Scholar 

  24. J. López Cacheiro, B. Fernández, D. Marchesan, S. Coriani, C. Hättig, A. Rizzo, Coupled cluster calculations of the ground state potential and interaction induced electric properties of the mixed dimers of helium, neon and argon. Mol. Phys. 102(1), 101–110 (2004)

    Article  Google Scholar 

  25. D. Wu, Z.-R. Li, Y.-H. Ding, M. Zhang, Z.-R. Zheng, B.-Q. Wang, X.-Y. Hao, Ab initio determination of the interaction hyperpolarizability for the H-bond complex NH3–HF. J. Comput. Meth. Sci. Eng. 4, 301–306 (2004)

    CAS  Google Scholar 

  26. A. Haskopoulos, D. Xenides, G. Maroulis, Interaction dipole moment, polarizability and hyperpolarizability in the KrXe heterodiatom. Chem. Phys. 309(2–3), 271–275 (2005)

    Article  CAS  Google Scholar 

  27. T. Bancewicz, G. Maroulis, Rotationally adapted studies of ab initio–computed collision-induced hyperpolarizabilities: the H2–Ar pair. Phys. Rev. A 79(4), 042704 (2009)

    Article  Google Scholar 

  28. A. Haskopoulos, G. Maroulis, Interaction electric hyperpolarizability effects in weakly bound H2O···Rg (Rg = He, Ne, Ar, Kr and Xe) complexes. J. Phys. Chem. A 114(33), 8730–8741 (2010)

    Article  CAS  Google Scholar 

  29. A. Chantzis, G. Maroulis, Interaction-induced electric properties in Kr–Ne from ab initio and DFT calculations. Is there a discrepancy between theory and experiment for the dipole moment? Chem. Phys. Lett. 507(1–3), 42–47 (2011)

    Article  CAS  Google Scholar 

  30. G. Maroulis, Interaction-induced electric properties. in Chemical Modelling; Applications and Theory. vol. 9, ed. By M. Springborg (The Royal Society of Chemistry, 2012), pp. 25–60

    Google Scholar 

  31. H. Reis, M.G. Papadopoulos, I. Boustani, DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters B n (n = 3–8, 10). Int. J. Quant. Chem. 78(2), 131–135 (2000)

    Article  CAS  Google Scholar 

  32. B. Skwara, W. Bartkowiak, A. Zawada, R.W. Góra, J. Leszczynski, On the cooperativity of the interaction-induced (hyper)polarizabilities of the selected hydrogen-bonded trimers. Chem. Phys. Lett. 436(1–3), 116–123 (2007)

    Article  CAS  Google Scholar 

  33. B. Skwara, A. Zawada, W. Bartkowiak, On the many-body components of interaction-induced electric properties: linear fluoroacetylene trimer as a case study. Compt. Lett. 3(2–4), 175–182 (2007)

    Article  CAS  Google Scholar 

  34. Y.-Z. Lan, Y.-L. Feng, Study of absorption spectra and (hyper)polarizabilities of SiC n and Si n C (n = 2–6) clusters using density functional response approach. J. Chem. Phys. 131(5), 054509 (2009)

    Article  Google Scholar 

  35. P. Karamanis, R. Marchal, P. Carbonniére, C. Pouchan, Doping-enhanced hyperpolarizabilities of silicon clusters: A global ab initio and density functional theory study of Si10 (Li, Na, K)n (n = 1, 2) clusters. J. Chem. Phys. 135(4), 044511 (2011)

    Article  Google Scholar 

  36. W. Głaz, T. Bancewicz, The hyper-Rayleigh light scattering spectrum of gaseous Ne–Ar mixture. J. Chem. Phys. 118(14), 6264–6269 (2003)

    Article  Google Scholar 

  37. W. Głaz, T. Bancewicz, J.L. Godet, Hyper-Rayleigh spectral intensities of gaseous Kr–Xe mixture. J. Chem. Phys. 122(22), 224323 (2005)

    Article  Google Scholar 

  38. W. Głaz, T. Bancewicz, J.-L. Godet, G. Maroulis, A. Haskopoulos, Hyper-Rayleigh light-scattering spectra determined by ab initio collisional hyperpolarizabilities of He-Ne atomic pairs. Phys. Rev. A 73(4), 042708 (2006)

    Article  Google Scholar 

  39. G. Maroulis, A. Haskopoulos, W. Głaz, T. Bancewicz, J.L. Godet, Collision-induced hyperpolarizability and hyper-Rayleigh spectra in the He–Ar heterodiatom. Chem. Phys. Lett. 428(1–3), 28–33 (2006)

    Article  CAS  Google Scholar 

  40. T. Bancewicz, W. Głaz, J.-L. Godet, Moments of hyper-Rayleigh spectra of selected rare gas mixtures. J. Chem. Phys. 127(13), 134308 (2007)

    Article  Google Scholar 

  41. T. Bancewicz, W. Głaz, J.-L. Godet, G. Maroulis, Collision-induced hyper-Rayleigh spectrum of H2–Ar gas mixture. J. Chem. Phys. 129(12), 124306 (2008)

    Article  Google Scholar 

  42. J.-L. Godet, T. Bancewicz, W. Głaz, G. Maroulis, A. Haskopoulos, Binary rototranslational hyper-Rayleigh spectra of H2–He gas mixture. J. Chem. Phys. 131(20), 204305 (2009)

    Article  Google Scholar 

  43. T. Bancewicz, J.-L. Godet, G. Maroulis, Collision-induced hyper-Rayleigh spectrum of octahedral molecules: the case of SF6. J. Chem. Phys. 115(18), 8547–8551 (2001)

    Article  CAS  Google Scholar 

  44. G. Maroulis, A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl. J. Chem. Phys. 108(13), 5432–5448 (1998)

    Article  CAS  Google Scholar 

  45. S.F. Boys, F. Bernardi, The calculations of small molecular interaction by the difference of separate total energies—some procedures with reduced error. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  46. X. Li, K.L.C. Hunt, J. Pipin, D.M. Bishop, Long-range, collision-induced hyperpolarizabilities of atoms or centrosymmetric linear molecules: Theory and numerical results for pairs containing H or He. J. Chem. Phys. 105(24), 10954–10968 (1996)

    Article  CAS  Google Scholar 

  47. H.B. Callen, T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83(1), 34–40 (1951)

    Article  Google Scholar 

  48. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980)

    Google Scholar 

  49. Yu.N. Kalugina, M.A. Buldakov, V.N. Cherepanov, Static hyperpolarizability of the van der Waals complex CH4–N2. J. Comput. Chem. 33(32), 2544–2553 (2012)

    Article  CAS  Google Scholar 

  50. H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi, P. Svejda, Ab initio intermolecular potentials of methane, nitrogen methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures. Mol. Phys. 80(6), 1413 (1993)

    Article  CAS  Google Scholar 

  51. M. Shadman, S. Yeganegi, F. Ziaie, Ab initio interaction potential of methane and nitrogen. Chem. Phys. Lett. 467, 237 (2009)

    Article  CAS  Google Scholar 

  52. Y.N. Kalugina, V.N. Cherepanov, M.A. Buldakov, N. Zvereva-Loëte, V. Boudon, Theoretical investigation of the potential energy surface of the van der Waals complex CH4–N2. J. Chem. Phys. 131, 134304 (2009)

    Article  Google Scholar 

  53. X. Li, M.H. Champagne, K.L.C. Hunt, Long-range, collision-induced dipoles of Td –D∞h molecule pairs: theory and numerical results for CH4 or CF4 interacting with H2, N2, CO2, or CS2. J. Chem. Phys. 109(19), 8416 (1998)

    Article  Google Scholar 

  54. N. Zvereva-Loëte, YuN Kalugina, V. Boudon, M.A. Buldakov, V.N. Cherepanov, Dipole moment surface of the van der Waals complex CH4–N2. J. Chem. Phys. 133(18), 184302 (2010)

    Article  Google Scholar 

  55. M.A. Buldakov, V.N. Cherepanov, YuN Kalugina, N. Zvereva-Loëte, V. Boudon, Static polarizability surfaces of the van der Waals complex CH4–N2. J. Chem. Phys. 132(16), 164304 (2009)

    Article  Google Scholar 

  56. G. Maroulis, Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. J. Chem. Phys. 118(6), 2673–2687 (2003)

    Article  CAS  Google Scholar 

  57. G. Maroulis, Electric dipole hyperpolarizability and quadrupole polarizability of methane from finite-field coupled cluster and fourth-order many-body perturbation theory calculations. Chem. Phys. Lett. 226(3–4), 420–426 (1994)

    Article  CAS  Google Scholar 

  58. G. Maroulis, Dipole-quadrupole and dipole-octupole polarizability for CH4 and CF4. J. Chem. Phys. 105(18), 8467–8468 (1996)

    Article  CAS  Google Scholar 

  59. C. Huiszoon, Ab initio calculations of multipole moments, polarizabilities and isotropic long-range coefficients for dimethylether, methanol, methane, and water. Mol. Phys. 58, 865 (1986)

    Article  CAS  Google Scholar 

  60. M.A. Buldakov, V.N. Cherepanov, Asymptotic model of exchange interactions for polarizability calculation of van der Waals complexes. J. Comp. Meth. Sci. Eng. 10, 1–16 (2010)

    Google Scholar 

  61. P.W. Fowler, A.J. Sadlej, Long-range and overlap effects on collision-induced properties. Mol. Phys. 77(4), 709–725 (1992)

    Article  CAS  Google Scholar 

  62. S.J. Syvin, J.E. Rauch, J.C. Decius, Theory of hyper-Raman effects (nonlinear inelastic light scattering): selection rules and depolarization rations for the second-order polarizability. J. Chem. Phys. 43(11), 4083–4095 (1965)

    Article  Google Scholar 

  63. V. Ostroverkhov, R.G. Petschek, K.D. Singer, L. Sukhomlinova, R.J. Twieg, S.-X. Wang, L.C. Chien, Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering. J. Opt. Soc. Am. 17(9), 1531–1542 (2000)

    Article  CAS  Google Scholar 

  64. P.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126(6), 1977–1979 (1962)

    Article  CAS  Google Scholar 

  65. G. Maroulis (ed.), Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to Calculation of Electric Polarizability. Computational, numerical and mathematical methods in science and engineering, vol. 1 (Imperial College Press, Singapore, 2006)

    Google Scholar 

  66. G. Maroulis, Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters (IOS Press, Amsterdam, 2006)

    Google Scholar 

  67. G. Maroulis, T. Bancewicz, B. Champagne and A.D. Buckingham (eds.), Atomic and Molecular Nonlinear Optics: Theory, Experiment and Computation. A Homage to the Pioneering Work of Stanislaw Kielich (1925–1993) (IOS Press Inc., Amsterdam, 2011)

    Google Scholar 

  68. U. Hohm, Experimental static dipole-dipole polarizabilities of molecules. J. Mol. Struct. 1054–1055, 282–292 (2013)

    Article  Google Scholar 

  69. A.D. Buckingham, J.E. Cordle, Nuclear motion corrections to some electric and magnetic properties of diatomic molecules. Mol. Phys. 28(4), 1037–1047 (1974)

    Article  CAS  Google Scholar 

  70. P.E.S. Wormer, H. Hettema, A.J. Thakkar, Intramolecular bond length dependence of the anisotropic dispersion coefficients for H2–rare gas interactions. J. Chem. Phys. 98(9), 7140–7144 (1993)

    Article  CAS  Google Scholar 

  71. A.D. Buckingham, R.L. Disch, D.A. Dummur, The quadrupole moments of some simple molecules. J. Am. Chem. Soc. 90(12), 3104–3107 (1968)

    Article  CAS  Google Scholar 

  72. M. Bartolomei, E. Carmona-Novillo, M.I. Hernández, J. Campos-Martínez, R. Hernández-Lamoneda, Long-range interaction for dimers of atmospheric interest: dispersion, induction and electrostatic contributions for O2–O2, N2–N2 and O2–N2. J. Comput. Chem. 32(2), 279–290 (2011)

    Article  CAS  Google Scholar 

  73. A.D. Buckingham, C. Graham, J.H. Williams, Electric field-gradient-induced birefringence in N2, C2H6, C3H6, Cl2, N2O and CH3F. Mol. Phys. 49(3), 703–710 (1983)

    Article  CAS  Google Scholar 

  74. H. Kling, W. Huettner, The temperature dependence of the Cotton-Mouton effect of N2, CO, N2O, CO2, OCS, and CS2 in the gaseous state. Chem. Phys. 90(1–2), 207–214 (1984)

    Article  CAS  Google Scholar 

  75. G. Maroulis, Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem. Phys. 291(1), 81–95 (2003)

    Article  CAS  Google Scholar 

  76. W.L. Meerts, F.H. De Leeuw, A. Dymanus, Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy. Chem. Phys. 22(2), 319–324 (1977)

    Article  CAS  Google Scholar 

  77. J.M.M. Roco, A. Calvo Hernandez, S. Velasco, Far-infrared permanent and induced dipole absorption of diatomic molecules in rare-gas fluids. I. Spectral theory. J. Chem. Phys. 103(21), 9161–9174 (1995)

    Article  CAS  Google Scholar 

  78. J.M.M. Roco, A. Medina, A. Calvo Hernandez, S. Velasco, Far-infrared permanent and induced dipole absorption of diatomic molecules in rare-gas fluids. II. Application to the CO–Ar system. J. Chem. Phys. 103(21), 9175–9186 (1995)

    Article  CAS  Google Scholar 

  79. R. Thomson, F.W. Dalby, Experimental determination of the dipole moments of the X(2Σ+) and B(2Σ+) states of the CN molecule. Can. J. Phys. 46(24), 2815–2819 (1968)

    Article  CAS  Google Scholar 

  80. E.W. Kaiser, Dipole moment and hyperfine parameters of H35Cl and D35Cl. J. Chem. Phys. 53(5), 1686–1703 (1970)

    Article  CAS  Google Scholar 

  81. F.H. De Leeuw, A. Dymanus, Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy. J. Mol. Spect. 48(3), 427–445 (1973)

    Article  Google Scholar 

  82. C. Pouchan, G. Maroulis, Accurate electric multipole moments for HCN and HCP from CCSD(T) calculations with large Gaussian basis sets. Theor. Chim. Acta. 93(3), 131–140 (1996)

    Article  Google Scholar 

  83. A.J. Hebert, F.J. Lovas, C.A. Melendres, C.D. Hollowell, T.L. Story Jr., K. Street Jr., Dipole moments of some alkali halide molecules by the molecular beam electric resonance method. J. Chem. Phys. 48(6), 2824–2825 (1968)

    Article  CAS  Google Scholar 

  84. G. Maroulis, Evaluating the performance of DFT methods in electric property calculations: sodium chloride as a test case. Rep. Theoretical Chem. 2(1), 1–8 (2013)

    Article  Google Scholar 

  85. W.L. Meerts, A. Dymanus, Electric dipole moments of OH and OD by molecular beam electric resonance. Chem. Phys. Lett. 23(1), 45–47 (1973)

    Article  CAS  Google Scholar 

  86. L. Laaksonen, F. Muller-Plathe, G.H.F. Diercksen, Fully numerical restricted Hartree-Fock calculations on open-shell hydrides: on the basis-set truncation error. J. Chem. Phys. 89(8), 4903–4908 (1988)

    Article  CAS  Google Scholar 

  87. G. Maroulis, Electric dipole hyperpolarizability and quadrupole polarizability of methane from finite-field coupled cluster and fourth-order many-body perturbation theory calculations. Chem. Phys. Lett. 226(3–4), 420–426 (1994)

    Article  CAS  Google Scholar 

  88. Yu.N. Kalugina, V.N. Cherepanov, Multipole electric moments and higher polarizabilities of molecules: the methodology and some results of ab initio calculations. Atmos. Oceanic Opt 28(5), 406–414 (2015)

    Article  CAS  Google Scholar 

  89. CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de

  90. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona,R. Lindh, A. Mitrushenkov, G. Rauhut , K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J. Deegan, A. J. ODobbyn, E. Eckert FGoll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, in Molpro, version 2012.1, a package of ab initio programs. See http://www.molpro.net

  91. A.C. Newell, R.C. Baird, Absolute determination of refractive indices of gases at 47.7 Gigahertz. J. Appl. Phys. 36(12), 3751–3759 (1965)

    Article  CAS  Google Scholar 

  92. J.W. Schmidt, M.R. Moldover, Dielectric permittivity of eight gases measured with cross capacitors. Int. J. Thermophys. 24(2), 375–403 (2003)

    Article  CAS  Google Scholar 

  93. G.A. Parker, R.T. Pack, Van der Waals interactions of carbon monoxide. J. Chem. Phys. 64(5), 2010–2012 (1976)

    Article  CAS  Google Scholar 

  94. M. Medved, M. Urban, V. Kello, G.H.F. Diercksen, Accuracy assessment of the ROHF-CCSD(T) calculations of static dipole polarizabilities of diatomic radicals: O2, CN, and NO. J. Mol. Struct. 547(1–3), 219–232 (2001). (Theochem)

    Article  CAS  Google Scholar 

  95. A. Kumar, W.J. Meath, Integrated dipole oscillator strength and dipole properties for Ne, Ar, Kr, Xe, HF, HCl and HBr. Can. J. Chem. 63(7), 1616–1630 (1985)

    Article  CAS  Google Scholar 

  96. G. Maroulis, C. Pouchan, Molecules in static electric fields: Linear and nonlinear polarizability of HCN and HCP. Phys. Rev. A 57(4), 2440–2447 (1998)

    Article  CAS  Google Scholar 

  97. G. Maroulis, Quadrupole polarizability and hyperpolarizability of carbon monoxide. Theor. Chim. Acta 84(3), 245–253 (1992)

    Article  CAS  Google Scholar 

  98. T.R. Dyke, J.S. Muenter, Electric dipole moments of low J states of H2O and D2O. J. Chem. Phys. 59(6), 3125–3127 (1973)

    Article  CAS  Google Scholar 

  99. J. Verhoeven, A. Dymanus, Magnetic Properties and molecular quadrupole tensor of the water molecule by Beam-Maser Zeeman Spectroscopy. J. Chem. Phys. 52(6), 3222–3233 (1970)

    Article  CAS  Google Scholar 

  100. I.G. John, G.B. Bacskay, N.S. Hush, Finite field method calculations. VI. Raman scattering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculations for CH4. Chem. Phys. 51(1–2), 49–60 (1980)

    Article  CAS  Google Scholar 

  101. C.D. Zeiss, W.J. Meath, Dispersion energy constants C6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O. Mol. Phys. 33(4), 1155–1176 (1977)

    Article  CAS  Google Scholar 

  102. A. Weber (ed.), Raman spectroscopy of Gases and Liquids (Springer, Berlin, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor N. Cherepanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Cherepanov, V.N., Kalugina, Y.N., Buldakov, M.A. (2017). Interaction-induced Hyperpolarizability. In: Interaction-induced Electric Properties of van der Waals Complexes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-49032-8_5

Download citation

Publish with us

Policies and ethics