Advertisement

The Emotional Perception of Phantom Limb Pain

  • Magali Fernández-SalazarEmail author
Chapter

Abstract

Chronic pain is a continuous learning state in which aversive emotional meanings are continuously associated with incidental events. In this chapter, I define “emotion” as an integrated neurobiological and functional adaptive process capable of generating physiological and experiential changes in constant interaction with neural systems and the external environment. The interaction of internal (neuronal) and external (environmental) dynamic networks may modulate the intensity and the experiential qualities of chronic pain, including its meaning and perception. Phantom-limb pain might be associated with an increased functional correlation of brain regions involved in the processing and integration of sensory, emotional, cognitive and socio-cultural components. The distinction between sensation and perception is essential for understanding the complexity of the neuro-mental processes of chronic pain, including phantom-limb pain. In the mental representation of phantom limb pain, body-perception may contribute to the development of an emotional and neuro-mental circuit in the brain leading to pain, which may elicit chronic phantom-limb pain.

Keywords

Chronic Pain Body Image Mental Representation Body Schema Phantom Limb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bartra R (2014) Anthropology of the brain, consciousness, culture and free will. Cambridge Press, CambridgeCrossRefGoogle Scholar
  2. Bernard C (1859) Leçons sur les propriétés physiologiques et les altérations pathologiques des liquides de l’organisme. Baillière, ParisCrossRefGoogle Scholar
  3. Bouhassira D, Calvino D (2009) Douleurs: physiologie, physiopathologie et pharmacologie. p. 94 Arnette, ParisGoogle Scholar
  4. Butler DS, Moseley LS (2003) Explain pain. Noigroup Publications, AdelaideGoogle Scholar
  5. Cannon WB (1914) The emergency function of the adrenal medulla in pain and the major emotions. Am J Physiol 33:356–372Google Scholar
  6. Cannon WB (1926) Physiological regulation of normal states: some tentatives postulates concerning biological homeostatics. In: Jubilé Charles Richet (ed) Editions Médicales, Paris, p 91Google Scholar
  7. Chapman CR (2005) “Psychological aspects of pain: a conscious studies perspectives” on the neurological basis of pain. McGraw-Hill, London, pp 157–171Google Scholar
  8. Clasper J, Ramasamy A (2013) Traumatic amputations. Br J Pain 7(2):67–73CrossRefPubMedPubMedCentralGoogle Scholar
  9. Condés-Lara M (2008) Nociceptive spinothalamic tract and post-synaptic dorsal column neurons are modulated by paraventricular hypothalamic activation. Eur J Neurosci 28(3):546–558CrossRefPubMedGoogle Scholar
  10. Condés-Lara M, Rojas Piloni G, Martinez Lorenzana G, Lopez Hidalgo M, Rodriguez Jiménez J (2009) Hypothalamospinal oxytocinergic antinociception is mediated by GABAergic and opiate neurons that reduce A-delta and C fiber primary afferent excitation of spinal cord cells. Brain Res 1247:38–49CrossRefPubMedGoogle Scholar
  11. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Rev Neurosci 26:1–30CrossRefGoogle Scholar
  12. Damasio A (1994) L’erreur de Descartes. La raison des émotions. Odile Jacob, Paris, p 16Google Scholar
  13. Damasio AR (2000) A second chance for emotion. In: Lane RD, Nadel L (eds) Cognitive neuroscience of emotion. Oxford University Press, Nueva York, p 18Google Scholar
  14. Díaz JL (2007) La conciencia viviente. FCE, MexicoGoogle Scholar
  15. Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowsky TA (2015) The hipocampus and TNF: common links between chronic pain and depression. Neurosci Biobehav Rev 53:139–159Google Scholar
  16. Fernández-Salazar M (2015) Cortical plasticity related with chronic pain in a continuous interaction of neuronal and mental processes, vol. 8, Center for Cognitive Sciences, University of MinnesotaGoogle Scholar
  17. Fields HL, Basbaum AI, Heinricher MM (2006) Central nervous mechanisms of pain modulation. In: McMahom SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain, 5th edn. Elsevier, China, pp 125–142CrossRefGoogle Scholar
  18. Flor H (2002) Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 1:182–189CrossRefPubMedGoogle Scholar
  19. Flor H (2003) Cortical reorganization and chronic pain: implications for rehabilitation. J Rehabil Med Suppl 41:66–72CrossRefGoogle Scholar
  20. Flor H, Nikolajsen L, Jensen TS (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881CrossRefPubMedGoogle Scholar
  21. Foltz EL, White LE Jr (1962) Pain “relief” by frontal cingulumotomy. Neurosurgery 19:89–100CrossRefGoogle Scholar
  22. Gallagher S, Meltzoff AN (1996) The earliest sense of self and others: Merleau-Ponty and recent development studies. Philos Psychol 9(2):211–233CrossRefGoogle Scholar
  23. Haggard P, Iannetti GD, Longo MR (2013) Spatial sensory organization and body representation in pain perception. Curr Biol 23(4):R164–R176CrossRefPubMedGoogle Scholar
  24. Harvie D, Moseley GL (2014) Exploring changes in the brain associated with recovery from phantom limb pain—the potential importance of telescoping. Eur J Pain 18(5):601–602CrossRefPubMedGoogle Scholar
  25. Hasanein P, Parviz M (2014) Role of GABAA receptor in modulation of acute thermal pain using a rat model of cholestasis. Pharmacol Biochem Behav 124:226–230CrossRefPubMedGoogle Scholar
  26. Jeannerod M (1994) The representing brain: Neural correlates of motor intention and imagery. Cambridge Univ Press 17:187–245Google Scholar
  27. Jensen TS, Krebs B, Rasmussen J, Nielsen P (1985) Immediate and long-term phantom limb pain in amputees: incidence, clinical characteristics and relationship to pre-amputation limb pain. Pain 21(3):267–278CrossRefPubMedGoogle Scholar
  28. Lotze M, Moseley GL (2007) Role of distorted body image in pain. Curr Rheumatol Rep 9(6):488–496CrossRefPubMedGoogle Scholar
  29. MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T (2008) Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131(8):2181–2191CrossRefPubMedPubMedCentralGoogle Scholar
  30. Melzack R (1990) Phantom limbs and the concept of a neuromatrix. Trends Neurosci 13(3):88–92CrossRefPubMedGoogle Scholar
  31. Melzack R, Bromage PR (1973) Experimental phantom limbs. Exp Neurol 39:261–269CrossRefPubMedGoogle Scholar
  32. Mitchell SW (1872) Injuries of nerves and their consequences. J.B. Lippincott and Co., PhiladelphiaGoogle Scholar
  33. Moseley GL, Gallace A, Spence C (2008) Is mirror therapy all it is cracked up to be? Current evidence and future directions. Pain 138(1):7–10CrossRefPubMedGoogle Scholar
  34. Mulder T, Hoschtenbach J, Dijkstra PU, Geertzen JH (2008) Born to adapt, but not in your dreams. Conscious Cogn 17(4):1266–1271 (Epub 2007 May 11)CrossRefPubMedGoogle Scholar
  35. Paré A (1551) La manière de traicter les playes faictes tant par hacquebutes que par fleches: et les accidentz d’icelles, comme fractures et caries des os, grangrene et mortification: avec les pourtraictz des intrumentz necessaires pour leur curation. Et la methode de curer les combustions principalement faictes par la pouldre à canon. La vefve Jean de Brie. Bibliothèque interuniversitaire de médecine, Paris, p 131. http://www.bium.univ-paris5.fr/histmed/medica/cote?extbmpoit6741
  36. Ramachandran V, Altschuler EL (2009) The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:1693–1710CrossRefPubMedGoogle Scholar
  37. Ramachandran VS, Hirstein W (1998) The perception of phantoms limbs. The D.O. Hebb lectures. Brain 12:1603–1630CrossRefGoogle Scholar
  38. Ramachandran VS, Rogers-Ramachandran D (1996) Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 263(1369):377–386CrossRefPubMedGoogle Scholar
  39. Robinson MJ, Edwards SE, Ivengar S, Bymaster F, Clark M, Katon M (2009) Depression and pain. Front Biosci (Landmark Ed.)Google Scholar
  40. Sanzone AG (2016) Use of nonopioid analgesics and the impact on patient outcomes. J Orthop Trauma 1:S12–S15CrossRefGoogle Scholar
  41. Schopenhauer A (2014) Le monde comme volonté et comme représentation, I, IV, 57. PUF, Paris, p 396Google Scholar
  42. Seeman TE, McEwen BS, Rowe JW, Singer BH (2001) Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci USA 98:4700–4775Google Scholar
  43. Sirigu A, Duhamel JR (2001) Motor and visual imagery as two complementary but neurally dissociable mental processes. J Cogn Neurosci, 13:910–919Google Scholar
  44. Sivilotti L, Woolf CJ (1994) The contribution of GABAA and glycine receptors to central sensitization and touch evoked allodynia in the spinal cord. J Neurophysiol 72(1):169–179PubMedGoogle Scholar
  45. Tso AR, Goadsby PJ (2014) New targets for migraine therapy. Curr Treat Opt Neurol 16(11):318CrossRefGoogle Scholar
  46. van Rysewyk S (2014) Objective knowledge of subjective pain? Towards a subjective-neuroscience of pain. Ngau Mamae, Spring:10–20Google Scholar
  47. Zhang Z, Tao W, Hou YY, Wang W, Lu YG, Pan ZZ (2014) Persistent pain facilitates response to morphine reward by downregulation of central amygdala GABAergic function. Neuropsychopharmacology 39(9):2263–2271CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging CentreUniversity-Hospital of GreifswaldGreifswaldGermany

Personalised recommendations