Skip to main content

Skeletonization Based Blood Vessel Quantification Algorithm for In Vivo Photoacoustic 3D Images

  • Chapter
  • First Online:
Quantitative Ultrasound and Photoacoustic Imaging for the Assessment of Vascular Parameters

Part of the book series: PoliTO Springer Series ((PTSS))

  • 754 Accesses

Abstract

This chapter (the contents of this chapter build upon the paper: K.M. Meiburger, S.Y. Nam, E. Chung, L.J. Suggs, S.Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging”, In: Physics in Medicine and Biology, 61(22), 2016) closes the second section of this work, which is based on emphasizing quantitative imaging techniques for the assessment of architectural parameters of vasculature that can be extracted from 3D volumes. A skeletonization technique for the quantitative assessment of vascular architecture in burn wounds was developed and validated using completely non-invasive photoacoustic imaging, thus not requiring any contrast agent administration. It was shown how this technique can provide quantitative information about the vascular network from photoacoustic 3D images that can distinguish healthy from diseased tissue. Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases have significant effects on blood vessel formation, so the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. A skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents is presented in this chapter. 3D photoacoustic images were acquired on rats (n \(=4\)) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, \(p<0.05\)) when comparing two anatomic locations on the same day and when considering the same anatomic location at two separate times (i.e., before and after burn surgery). The study demonstrates how it is possible to obtain quantitative characterization of the vascular network from 3D photoacoustic images without any exogenous contrast agent which can assess microenvironmental changes related to disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Carmeliet, Angiogenesis in life, disease and medicine. Nature 438(7070), 932–936 (2005)

    Article  Google Scholar 

  2. P. Carmeliet, R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347), 298–307 (2011)

    Article  Google Scholar 

  3. E. Bullitt, N.U. Lin, M.G. Ewend, D. Zeng, E. P. Winer, L.A. Carey, J.K. Smith, Tumor therapeutic response and vessel tortuosity: preliminary report in metastatic breast cancer, in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006 (Springer, New York, 2006), pp. 561–568

    Google Scholar 

  4. C.Y. Li, S. Shan, Q. Huang, R.D. Braun, J. Lanzen, K. Hu, P. Lin, M.W. Dewhirst, Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J. Natl Cancer Inst. 92(2), 143–147 (2000)

    Article  Google Scholar 

  5. J.T. Perry, J.D. Statler, Advances in vascular imaging. Surg. Clin. North Am. 87(5), 975–993 (2007)

    Article  Google Scholar 

  6. D.M. McDonald, P.L. Choyke, Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9(6), 713–725 (2003)

    Article  Google Scholar 

  7. R.C. Gessner, C.B. Frederick, F.S. Foster, P.A. Dayton, Acoustic angiography: a new imaging modality for assessing microvasculature architecture. J. Biomed. Imaging 2013, 14 (2013)

    Google Scholar 

  8. R.C. Gessner, S.R. Aylward, P.A. Dayton, Mapping microvasculature with acoustic angiography yields quantifiable differences between healthy and tumor-bearing tissue volumes in a rodent model. Radiology 264(3), 733–740 (2012)

    Article  Google Scholar 

  9. T.E. de Carlo et al., A review of optical coherence tomography angiography (OCTA). Int. J. Retina Vitreous 1(1), 5 (2015)

    Article  Google Scholar 

  10. Y.M. Liew, R.A. McLaughlin, P. Gong, F.M. Wood, D.D. Sampson, In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography. J. Biomed. Opt. 18(6), 061213 (2012)

    Article  Google Scholar 

  11. L. Kuehlewein, S.R. Sadda, D. Sarraf, OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy. Eye 29(7), 932–935 (2015)

    Article  Google Scholar 

  12. J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, D.A. Boas, Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography. J. Cereb. Blood Flow Metab. 33(6), 819–25 (2013)

    Article  Google Scholar 

  13. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, R. Wang, Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int. J. Biomed. Imaging 2012, Article ID 509783, p. 11 (2012)

    Google Scholar 

  14. S.Y. Emelianov, P.-C. Li, M. O’Donnell, Photoacoustics for molecular imaging and therapy. Phys. Today 62(8), 34 (2009)

    Article  Google Scholar 

  15. J. Wang, M. Sui, W. Fan, Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 11(2), 129–141 (2010)

    Article  Google Scholar 

  16. S.Y. Nam, L.M. Ricles, L.J. Suggs, S.Y. Emelianov, In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One 7(5), e37267 (2012)

    Article  Google Scholar 

  17. S. Hu, K. Maslov, L.V. Wang, In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. Med. Phys. 36(6), 2320–2323 (2009)

    Article  Google Scholar 

  18. R.A. Kruger, R.B. Lam, D.R. Reinecke, S.P. Del Rio, R.P. Doyle, Photoacoustic angiography of the breast. Med. Phys. 37(11), 6096–6100 (2010)

    Article  Google Scholar 

  19. H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24(7), 848–851 (2006)

    Article  Google Scholar 

  20. G. Ku, X. Wang, X. Xie, G. Stoica, L.V. Wang, Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl. Opt. 44(5), 770–775 (2005)

    Article  Google Scholar 

  21. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K.K. Shung, C.A. Puliafito, H.F. Zhang, Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18(4), 3967–3972 (2010)

    Article  Google Scholar 

  22. W. Song, Q. Wei, T. Liu, D. Kuai, J.M. Burke, S. Jiao, H.F. Zhang, Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 17(6), 0612061–0612067 (2012)

    Article  Google Scholar 

  23. Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, L. Song, Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. Opt. Express 22(2), 1500–1511 (2014)

    Article  Google Scholar 

  24. Y.S. Zhang, J. Yao, C. Zhang, L. Li, L.V. Wang, Y. Xia, Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. Angew. Chem. Int. Ed. 53(31), 8099–8103 (2014)

    Article  Google Scholar 

  25. F. Molinari, A. Mantovani, M. Deandrea, P. Limone, R. Garberoglio, J. Suri, Characterization of single thyroid nodules by contrast-enhanced 3-d ultrasound. Ultrasound Med. Biol. 36(10), 1616–1625 (2010)

    Article  Google Scholar 

  26. F. Molinari, K.M. Meiburger, P. Giustetto, S. Rizzitelli, C. Boffa, M. Castano, E. Terreno, Quantitative assessment of cancer vascular architecture by skeletonization of highresolution 3-d contrast-enhanced ultrasound images: role of liposomes and microbubbles. Technol. Cancer Res. Treat. 13(6), 541–550 (2014)

    Google Scholar 

  27. K.M. Meiburger, S.Y. Nam, E. Chung, L.J. Suggs, S.Y. Emelianov, F. Molinari, Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging. Phys. Med. Biol. 61(22) (2016)

    Google Scholar 

  28. A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Multiscale vessel enhancement filtering, in Medical Image Computing and Computer-Assisted Interventation “MICCAI” ’98 (Springer, New York, 1998), pp. 130–137

    Google Scholar 

  29. N. Otsu, Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC 9(1), 62–66 (1979)

    Google Scholar 

  30. M. Kerschnitzki, P. Kollmannsberger, M. Burghammer, G.N. Duda, R. Weinkamer, W. Wagermaier, P. Fratzl, Architecture of the osteocyte network correlates with bone material quality. J. Bone Min. Res. 28(8), 1837–1845 (2013)

    Article  Google Scholar 

  31. T.-C. Lee, R.L. Kashyap, C.-N. Chu, Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  32. J. Silvela, J. Portillo, Breadth-first search and its application to image processing problems. IEEE Trans. Image Process. 10(8), 1194–1199 (2001)

    Article  MATH  Google Scholar 

  33. E. Bullitt, G. Gerig, S.M. Pizer, W. Lin, S.R. Aylward, Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 22(9), 1163–1171 (2003)

    Article  Google Scholar 

  34. E. Bullitt, K.E. Muller, I. Jung, W. Lin, S. Aylward, Analyzing attributes of vessel populations. Med. Image Anal. 9(1), 39–49 (2005)

    Article  Google Scholar 

  35. F. Kiessling, D. Razansky, F. Alves, Anatomical and microstructural imaging of angiogenesis. Eur. J. Nucl. Med. Mol. Imaging 37(1), 4–19 (2010)

    Article  Google Scholar 

  36. A. Taruttis, E. Herzog, D. Razansky, V. Ntziachristos, Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt. Express 18(19), 19592–19602 (2010)

    Article  Google Scholar 

  37. H. Zhang, K. Maslov, G. Stoica, L. Wang, Functional photoacoustic microscopy for highresolution and noninvasive in vivo imaging. Nat. Biotechnol. 24(7), 848–851 (2006)

    Article  Google Scholar 

  38. J. Staley, P. Grogan, A. Samadi, H. Cui, M. Cohen, X. Yanga, Growth of melanoma brain tumors monitored by photoacoustic microscopy. J. Biomed. Opt. 15(4) (2010)

    Google Scholar 

  39. J.-T. Oh, M.-L. Li, H. Zhang, K. Maslov, G. Stoica, L. Wang, Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 11(3) (2006)

    Google Scholar 

  40. M.-L. Li, J. Wang, J. Schwartz, K. Gill-Sharp, G. Stoica, L. Wang, In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J. Biomed. Opt. 14(1) (2009)

    Google Scholar 

  41. E.Z. Zhang, P.C. Beard, A miniature all-optical photoacoustic imaging probe. SPIE BiOS. International Society for Optics and Photonics (2011), pp. 78991F-78991F

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen M. Meiburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meiburger, K.M. (2017). Skeletonization Based Blood Vessel Quantification Algorithm for In Vivo Photoacoustic 3D Images. In: Quantitative Ultrasound and Photoacoustic Imaging for the Assessment of Vascular Parameters. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48998-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48998-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48997-1

  • Online ISBN: 978-3-319-48998-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics