Skip to main content

Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of 3D CEUS Images: Role of Liposomes and Microbubbles

  • Chapter
  • First Online:
Quantitative Ultrasound and Photoacoustic Imaging for the Assessment of Vascular Parameters

Part of the book series: PoliTO Springer Series ((PTSS))

  • 709 Accesses

Abstract

This Chapter (The contents of this chapter build upon the paper: F. Molinari, K. M. Meiburger, P. Giustetto, S. Rizzitelli, C. Boffa, M. Castano, and E. Terreno, “Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of High Resolution 3D Contrast-Enhanced Ultrasound Images: Role of Liposomes and Microbubbles”, In: Technology in Cancer Research and Treatment, 13(6):541–550, 2014) opens the second section of this work, which is based on emphasizing quantitative imaging techniques for the assessment of architectural parameters of vasculature that can be extracted from 3D volumes. Using contrast-enhanced ultrasound (CEUS) imaging, it was demonstrated how the characterization and description of the vascular network of a cancer lesion in mouse models can be effectively determined using both traditional microbubbles and liposomes. Eight mice were administered both microbubbles and liposomes and 3D CEUS volumes were acquired. Vascular architectural descriptors were calculated after a skeletonization technique was applied. The accurate characterization and description of the vascular network of a cancer lesion is of critical importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1, 2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3D contrast-enhanced images of the tumor lesions were acquired pre-contrast, after the injection of microbubbles, and after the injection of liposomes. The 3D representation of the vascular architecture in these three conditions was obtained with a previously developed reconstruction and characterization image processing technique,. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2D curvature measure, the number of vascular flexes of the vessels, and the 3D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient “theranostic ”(i.e. therapeutic \(+\) diagnostic) ultrasound probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Acharya, O. Faust, S. Sree, F. Molinari, R. Garberoglio, J. Suri, Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrastenhanced ultrasound using combination of wavelets and textures: A class of thyroscan™ algorithms. Technol. Cancer Res. Treat. 10(4), 371–380 (2011)

    Google Scholar 

  2. U. Acharya, O. Faust, S. Sree, F. Molinari, J. Suri, ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput. Methods Programs Biomed. 107(2), 233–241 (2012)

    Article  Google Scholar 

  3. N. Faccioli, S. Crippa, C. Bassi, M. D’Onofrio, Contrast-enhanced ultrasonography of the pancreas. Pancreatology 9(5), 560–566 (2009)

    Article  Google Scholar 

  4. T. Herbold, R. Wahba, C. Bangard, M. Demir, U. Drebber, D. Stippel, The laparoscopic approach for radiofrequency ablation of hepatocellular carcinoma - Indication, technique and results. Langenbeck’s Arch. Surg. 398(1), 47–53 (2013)

    Article  Google Scholar 

  5. J. Wolff, M. Mason, Drivers for change in the management of prostate cancer - Guidelines and new treatment techniques. BJU Int. 109(SUPPL. 6), 33–41 (2012)

    Article  Google Scholar 

  6. U. R. Acharya, S. Vinitha Sree, M. Muthu Rama Krishnan, L. Saba, F. Molinari, S. Guerriero, J. Suri, Ovarian tumor characterization using 3D ultrasound. Technol. Cancer Res. Treat 11(6), 543–552 (2012)

    Google Scholar 

  7. U. Acharya, S. Sree, L. Saba, F. Molinari, S. Guerriero, J. Suri, Ovarian tumor characterization and classification using ultrasound - A new online paradigm. J. Digit. Imaging 26(3), 544–553 (2013)

    Article  Google Scholar 

  8. T. Boehler, F. Zoehrer, M. Harz, H. Hahn, Breast image registration and deformation modeling. Crit. Rev. Biomed. Eng. 40(3), 235–258 (2012)

    Article  Google Scholar 

  9. U. Roelcke, Imaging brain tumors with PET, SPECT, and ultrasonography. Handb. Clin. Neurol. 104, 135–142 (2012)

    Article  Google Scholar 

  10. W. Uller, E. Jung, M. Hornung, C. Ross, W. Jung, H. Schlitt, C. Stroszczynski, A. Agha, Evaluation of the microvascularization of pathologic parathyroid glands in patients with primary hyperparathyroidism using conventional ultrasound and contrast-enhanced ultrasound. Clin. Hemorheol. Microcirc. 48(1–3), 95–103 (2011)

    Google Scholar 

  11. M. Varras, Benefits and limitations of ultrasonographic evaluation of uterine adnexal lesions in early detection of ovarian cancer. Clin. Exp. Obstetri. Gynecol. 31(2), 85–98 (2004)

    Google Scholar 

  12. J. Hoang, K. Wai, M. Lee, D. Johnson, S. Farrell, US features of thyroid malignancy: Pearls and pitfalls. Radiographics 27(3), 847–860 (2007)

    Article  Google Scholar 

  13. J.-M. Gorce, M. Arditi, M. Schneider, Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of sonovue(TM). Investig. Radiol. 35(11), 661–671 (2000)

    Article  Google Scholar 

  14. J. Bzyl, W. Lederle, A. Rix, C. Grouls, I. Tardy, S. Pochon, M. Siepmann, T. Penzkofer, M. Schneider, F. Kiessling, M. Palmowski, Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur. Radiol. 21(9), 1988–1995 (2011)

    Article  Google Scholar 

  15. S. Carerj, A. Trono, C. Zito, E. Ficarra, F. Luzza, G. Oreto, F. Arrigo, Harmonic tissue imaging: From physical principles to clinical application [La seconda armonica tissutale: Dai principi fisici all’applicazione clinica]. Ital. Heart J. Suppl. 2(10), 1078–1086 (2001)

    Google Scholar 

  16. M. Schneider, Characteristics of SonoVue(TM). Echocardiography 16(7) II, 743–746 (1999)

    Google Scholar 

  17. R. Carraro, F. Molinari, M. Deandrea, R. Garberoglio, J. Suri, Characterization of thyroid nodules by 3-D contrast-enhanced ultrasound imaging, (2008), pp. 2229–2232

    Google Scholar 

  18. F. Molinari, A. Mantovani, M. Deandrea, P. Limone, R. Garberoglio, J. Suri, Characterization of Single Thyroid Nodules by Contrast-Enhanced 3-D Ultrasound. Ultrasound Med. Biol. 36(10), 1616–1625 (2010)

    Article  Google Scholar 

  19. S.-F. Huang, R.-F. Chang, W. Moon, Y.-H. Lee, D.-R. Chen, J. Suri, Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images. IEEE Trans. Med. Imaging 27(3), 320–330 (2008)

    Article  Google Scholar 

  20. Y.-H. Huang, J.-H. Chen, Y.-C. Chang, C.-S. Huang, W. Moon, W.-J. Kuo, K.-J. Lai, R.-F. Chang, Diagnosis of solid breast tumors using vessel analysis in three-dimensional power Doppler ultrasound images. J. Digit. Imaging 26(4), 731–739 (2013)

    Article  Google Scholar 

  21. U. Acharya, S. Sree, G. Swapna, S. Gupta, F. Molinari, R. Garberoglio, A. Witkowska, J. Suri, Effect of complex wavelet transform filter on thyroid tumor classification in three dimensional ultrasound. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 227(3), 284–292 (2013)

    Article  Google Scholar 

  22. F. Molinari, K.M. Meiburger, P. Giustetto, S. Rizzitelli, C. Boffa, M. Castano, E. Terreno, Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of Highresolution 3-D Contrast-enhanced Ultrasound Images: Role of Liposomes and Microbubbles. Technol. Cancer Res. Treat. 13(6), 541–550 (2014)

    Google Scholar 

  23. P. Giustetto, D. Castelli, C. Boffa, S. Rizzitelli, D. Durando, J. Cutrin, S. Aime, E. Terreno, Release of a paramagnetic magnetic resonance imaging agent from liposomes triggered by low intensity non-focused ultrasound. J. Med. Imaging Health Inform. 3(3), 356–366 (2013)

    Article  Google Scholar 

  24. J. Wang, M. Sui, W. Fan, Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 11(2), 129–141 (2010)

    Article  Google Scholar 

  25. N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17(17–18), 928–934 (2012)

    Article  Google Scholar 

  26. E. Terreno, F. Uggeri, S. Aime, Image guided therapy: The advent of theranostic agents. J. Control. Release 161(2), 328–337 (2012)

    Article  Google Scholar 

  27. P. Prabhu, V. Patravale, The upcoming field of theranostic nanomedicine: An overview. J. Biomed. Nanotechnol. 8(6), 859–882 (2012)

    Article  Google Scholar 

  28. S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, G. Vesce, Mice anesthesia, analgesia, and care, Part II: anesthetic considerations in preclinical imaging studies. ILAR journal / National Research Council, Institute of Laboratory Animal Resources 53(1), E70–81 (2012)

    Article  Google Scholar 

  29. N. Otsu. ‘Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. SMC-9(1), 62–66 (1979)

    Google Scholar 

  30. C. Ma, M. Sonka, A fully parallel 3D thinning algorithm and its applications. Comput. Vis. Image Underst. 64(3), 420–433 (1996)

    Article  Google Scholar 

  31. C. Arcelli, G. Sanniti Di Baja, L. Serino, Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011)

    Article  Google Scholar 

  32. K. Palágyi, A. Kuba, A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognit. Lett. 19(7), 613–627 (1998)

    Article  MATH  Google Scholar 

  33. J. Silvela, J. Portillo, Breadth-first search and its application to image processing problems. IEEE Trans. Image Process. 10(8), 1194–1199 (2001)

    Article  MATH  Google Scholar 

  34. J. Kopechek, K. Haworth, J. Raymond, T. Douglas Mast, S. Perrin Jr., M. Klegerman, S. Huang, T. Porter, D. McPherson, and C. Holland. Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter. In: J. Acoust. Soc. Am. 130(5), 3472–3481 (2011)

    Google Scholar 

  35. O. Ishida, K. Maruyama, K. Sasaki, M. Iwatsuru, Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int. J. Pharm. 190(1), 49–56 (1999)

    Article  Google Scholar 

  36. C. Grouls, M. Hatting, A. Rix, S. Pochon, W. Lederle, I. Tardy, C. Kuhl, C. Trautwein, F. Kiessling, M. Palmowski, Liver dysplasia: US molecular imaging with targeted contrast agent enables early assessment. Radiology 267(2), 487–495 (2013)

    Article  Google Scholar 

  37. D. Delli Castelli, W. Dastrù, E. Terreno, E. Cittadino, F. Mainini, E. Torres, M. Spadaro, S. Aime, In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. J. Control. Release 144(3), 271–279 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen M. Meiburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meiburger, K.M. (2017). Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of 3D CEUS Images: Role of Liposomes and Microbubbles. In: Quantitative Ultrasound and Photoacoustic Imaging for the Assessment of Vascular Parameters. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48998-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48998-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48997-1

  • Online ISBN: 978-3-319-48998-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics