Skip to main content

Using Virtual Reality to Advance the Understanding and Rehabilitation of Gait Impairments in Parkinson’s Disease

  • Chapter
  • First Online:
Locomotion and Posture in Older Adults

Abstract

Virtual reality (VR) provides a unique platform to study the complex interactions between an individual’s movement and their environment. Although this innovative technology has not yet been widely used in Parkinson’s disease (PD) research, it has tremendous potential to advance both our understanding and treatment of gait impairments. In this chapter, we will first outline the variety of virtual reality systems available and contrast the associated advantages and disadvantages that warrant consideration for using virtual reality in experimental and/or therapeutic settings. We will then discuss the utility of VR in the scientific exploration of mechanisms that underlie gait impairments in PD. Finally, we will examine the effectiveness of using VR in a therapeutic setting based on the current research, and provide future directions for therapeutic interventions for gait in PD utilizing virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005;8:187–211. doi:10.1089/cpb.2005.8.187. discussion 212–9.

    Article  PubMed  Google Scholar 

  2. Mirelman A, Maidan I, Deutsch JE. Virtual reality an motor imagery: promising tools for assessment and therapy in Parkinson’s disease. Mov Disord. 2013;28:1597–608.

    Article  PubMed  Google Scholar 

  3. Gilat M, Shine JM, Bolitho SJ, et al. Variability of stepping during a virtual reality paradigm in Parkinson’s disease patients with and without freezing of gait. PLoS One. 2013;8:e66718. doi:10.1371/journal.pone.0066718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shine JM, Ward PB, Naismith SL, et al. Utilising functional MRI (fMRI) to explore the freezing phenomenon in Parkinson’s disease. J Clin Neurosci. 2011;18:807–10. doi:10.1016/j.jocn.2011.02.003.

    Article  PubMed  Google Scholar 

  5. Shine JM, Matar E, Bolitho SJ, et al. Modeling freezing of gait in Parkinson’s disease with a virtual reality paradigm. Gait Posture. 2013;38:104–8. doi:10.1016/j.gaitpost.2012.10.026.

    Article  CAS  PubMed  Google Scholar 

  6. Nichols S. Physical ergonomics of virtual environment use. Appl Ergon. 1999;30:79–90.

    Article  CAS  PubMed  Google Scholar 

  7. Stanney K, Kennedy R, Drexleer J, et al. Motion sickness and proprioceptive after effects following virtual environment exposure. Appl Ergon. 1999;30:27–38.

    Article  CAS  PubMed  Google Scholar 

  8. Mirelman A, Maidan I, Herman T, et al. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66A:234–40.

    Article  Google Scholar 

  9. Cole S, Yoo D, Knutson B. Interactivity and reward-related neural activation during a serious videogame. PLoS One. 2012;7:e33909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Messier J, Adamovich SV, Jackson D, et al. Visuomotor learning in immersive 3D virtual reality in Parkinson’s disease and in aging. Exp Brain Res. 2007;179:457–74.

    Article  PubMed  Google Scholar 

  11. Griffin HJ, Greenlaw R, Limousin P, et al. The effect of real and virtual visual cues on walking in Parkinson’s disease. J Neurol. 2011;258:991–1000. doi:10.1007/s00415-010-5866-z.

    Article  CAS  PubMed  Google Scholar 

  12. Todorov E, Shadmer R, Bizzi E. Augmented feedback presented in a virtual environment accelerates learning a difficult motor task. J Mot Behav. 1997;29:147–58.

    Article  CAS  PubMed  Google Scholar 

  13. Rose F, Attree E, Brooks B, et al. Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics. 2000;43:494–511.

    Article  CAS  PubMed  Google Scholar 

  14. Jaffe D, Brown D, Pierson-Carey C, et al. Stepping over obstacles to improve walking in individuals with poststroke hemiplegia. J Rehabil Res Dev. 2004;41:283–92.

    Article  PubMed  Google Scholar 

  15. Azulay JP, Mesure S, Amblard B, et al. Increased visual dependence in Parkinson’s disease. Percept Mot Skills. 2002;95:1106–14.

    Article  PubMed  Google Scholar 

  16. Martens KAE, Almeida QJ. Dissociating between sensory and perceptual deficits in PD: more than simply a motor deficit. Mov Disord. 2012;27:387–92. doi:10.1002/mds.24042.

    Article  PubMed  Google Scholar 

  17. Davidsdottir S, Wagenaar R, Young D, et al. Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain. 2008;131:2882–93. doi:10.1093/brain/awn237.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iansek R, Danoudis M, Bradfield N. Gait and cognition in Parkinson’s disease: implications for rehabilitation. Rev Neurosci. 2013;24:293–300.

    Article  PubMed  Google Scholar 

  19. Lord S, Galna B, Coleman S, et al. Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson’ s disease. Front Aging Neurosci. 2014;6:1–9. doi:10.3389/fnagi.2014.00249.

    Article  Google Scholar 

  20. Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol. 2014;13:100–12. doi:10.1016/S1474-4422(13)70213-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaji R, Murase N. Sensory function of basal ganglia. Mov Disord. 2001;16:593–4.

    Article  CAS  PubMed  Google Scholar 

  22. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18:231–40. doi:10.1002/mds.10327.

    Article  PubMed  Google Scholar 

  23. Adamovich SV, Berkinblit MB, Hening W, et al. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience. 2001;104:1027–41. doi:10.1016/S0306-4522(01)00099-9.

    Article  CAS  PubMed  Google Scholar 

  24. Schubert M, Prokop T, Brocke F, et al. Visual kinesthesia and locomotion in Parkinson’s disease. Mov Disord. 2005;20:141–50.

    Article  PubMed  Google Scholar 

  25. Prokop T, Schubert M, Berger W. Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res. 1997;114:63–70.

    Article  CAS  PubMed  Google Scholar 

  26. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson’ s disease ? Exp Brain Res. 2015;233:787–95. doi:10.1007/s00221-014-4154-z.

    Article  PubMed  Google Scholar 

  27. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Dopaminergic contributions to distance estimation in Parkinson’s disease: a sensory-perceptual deficit? Neuropsychologia. 2013;51:1426–34. doi:10.1016/j.neuropsychologia.2013.04.015.

    Article  PubMed  Google Scholar 

  28. Ehgoetz Martens KA, Ellard CG, Almeida QJ. A closer look at mechanisms underlying perceptual differences in Parkinson’s freezers and non-freezers. Neuroscience. 2014;274:162–9. doi:10.1016/j.neuroscience.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  29. Lin C, Wagenaar R, Young D, et al. Effects of Parkinson’s disease on optic flow perception for heading direction during navigation. Exp Brain Res. 2014;232:1343–55. doi:10.1007/s00221-014-3853-9.Effects.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ehgoetz Martens KA, Pieruccini-Faria F, Silveira CR, et al. The contribution of optic flow to freezing of gait in left- and right-PD: different mechanisms for a common phenomenon? Parkinsonism Relat Disord. 2013;19:1046–8. doi:10.1016/j.parkreldis.2013.06.011.

  31. Chan RCK, Shum D, Toulopoulou T, et al. Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol. 2008;23:201–16. doi:10.1016/j.acn.2007.08.010.

    Article  PubMed  Google Scholar 

  32. Albani G, Pignatti R, Bertella L, et al. Common daily activities in the virtual environment: a preliminary study in parkinsonian patients. Neurol Sci. 2002;23:49–50. doi:10.1007/s100720200064.

    Article  Google Scholar 

  33. Cipresso P, Albani G, Serino S, et al. Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Front Behav Neurosci. 2014;8:405. doi:10.3389/fnbeh.2014.00405.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Klinger E, Chemin L, Lebreton S, et al. Virtual action planning in action Parkinson’s disease: a control study. Cyberpsychol Behav. 2006;9:342–7.

    Article  PubMed  Google Scholar 

  35. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Virtually-induced threat in Parkinson’s: dopaminergic interactions between anxiety and sensory-perceptual processing while walking. Neuropsychologia. 2015:1–10. doi:10.1016/j.neuropsychologia.2015.05.015.

  36. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Anxiety-provoked gait changes are selectively dopa-responsive in Parkinson’s disease. Eur J Neurosci. 2015:1–8. doi:10.1111/ejn.12928.

  37. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Evaluating the link between dopaminergic treatment, gait impairment, and anxiety in Parkinson’s disease. Mov Disord Clin Pract. Published Online First: 2016. doi:10.1002/mdc3.12298.

  38. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does anxiety cause freezing of gait in Parkinson’s disease? PLoS One. 2014;9:e106561. doi:10.1371/journal.pone.0106561.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewis SJG, Barker RA. A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:333–8. doi:10.1016/j.parkreldis.2008.08.006.

    Article  PubMed  Google Scholar 

  40. Lewis SJG, Barker RA. Understanding the dopaminergic deficits in Parkinson’s disease: insights into disease heterogeneity. J Clin Neurosci. 2009;16:620–5. doi:10.1016/j.jocn.2008.08.020.

    Article  CAS  PubMed  Google Scholar 

  41. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Virtually-induced threat in Parkinson’s: dopaminergic interactions between anxiety and sensory-perceptual processing while walking. Neuropsychologia. Published Online First: 2015. doi:10.1016/j.neuropsychologia.2015.05.015.

  42. Naismith SL, Lewis SJG. The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov Disord. 2010;25:1000–4.

    Article  PubMed  Google Scholar 

  43. Matar E, Shine JM, Naismith SL, et al. Using virtual reality to explore the role of conflict resolution and environmental salience in freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:937–42.

    Article  PubMed  Google Scholar 

  44. Matar E, Shine JM, Naismith SL, et al. Virtual reality walking and dopamine: opening new doorways to understanding freezing of gait in Parkinson’s disease. J Neurol Sci. 2014;344:182–5. doi:10.1016/j.jns.2014.06.054.

    Article  CAS  PubMed  Google Scholar 

  45. Shine JM, Matar E, Ward PB, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain. 2013;136:1204–15. doi:10.1093/brain/awt049.

    Article  PubMed  Google Scholar 

  46. Shine JM, Matar E, Ward PB, et al. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain. 2013;136:3671–81. doi:10.1093/brain/awt272.

    Article  PubMed  Google Scholar 

  47. Shine JM, Koyejo O, Bell PT, et al. Estimation of dynamic functional connectivity using multiplication of temporal derivatives. Neuroimage. 2015;122:399–407.

    Article  PubMed  Google Scholar 

  48. Shine JM, Matar E, Ward PB, et al. Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One. 2013;8:e52602. doi:10.1371/journal.pone.0052602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilat M, Shine JM, Walton CC, et al. Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: a virtual reality fMRI study brain activation underlying turning in Parkinson’ s disease patients with and without freezing of gait: a virtual real. npj Park Dis. 2015;1:15020. doi:10.1038/npjparkd.2015.20.

  50. Nutt JG, Bloem BR, Giladi N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–44. doi:10.1016/S1474-4422(11)70143-0.

    Article  PubMed  Google Scholar 

  51. Nieuwboer A, Giladi N. Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov Disord. 2013;28:1509–19. doi:10.1002/mds.25683.

    Article  PubMed  Google Scholar 

  52. Lewis SJG, Shine JM. The next step: a common neural mechanism for freezing of gait. Neuroscientist 2014. doi:10.1177/1073858414559101.

  53. Baram Y. Virtual sensory feedback for gait improvement in neurological patients. Front Neurol. 2013;4:138. doi:10.3389/fneur.2013.00138.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ashoori A, Eagleman DM, Jankovic J. Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front Neurol. 2015;6:1–11. doi:10.3389/fneur.2015.00234.

    Article  Google Scholar 

  55. Mirelman A, Rochester L, Reelick M, et al. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 2013;13:15. doi:10.1186/1471-2377-13-15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laver K, George S, Thomas S, et al. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med. 2012;48:523–30.

    CAS  PubMed  Google Scholar 

  57. Jones C, Jahanshahi M. Motor and perceptual timing in Parkinson’s disease. Adv Exp Med Biol. 2014;829:265–90.

    Article  PubMed  Google Scholar 

  58. Chen J, Penhune V, Zatorre R. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008;18:2844–54.

    Article  PubMed  Google Scholar 

  59. Bengtsson S, Ullen F, Ehrsson H, et al. Listening to rhythms activates motor and premotor cortices. Cortex. 2009;45:62–71.

    Article  PubMed  Google Scholar 

  60. Pastor M, Artieda J, Jahanshahi M, et al. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain. 1992;115:211–25.

    Article  PubMed  Google Scholar 

  61. Coull JT, Cheng R, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2010;36:3–25. doi:10.1038/npp.2010.113.

    Article  PubMed  PubMed Central  Google Scholar 

  62. O’Boyle D, Freeman J, Cody F. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119:51–70.

    Article  PubMed  Google Scholar 

  63. Tolleson C, Dobolyi D, Roman O, et al. Dysrhythmia of timed movements in Parkinson’s disease and freezing of gait. Brain Res. 1624;2015:222–31.

    Google Scholar 

  64. Beudel M, Galama S, Leenders K, et al. Time estimation in Parkinson’s disease and degenerative cerebellar disease. Neuroreport. 2008;19:1055–8.

    Article  PubMed  Google Scholar 

  65. Nombela C, Hughes L, Owen AM, et al. Into the groove: can rhythm influence Parkinson’s disease? Neurosci Biobehav Rev. 2013;37:2564–70.

    Article  PubMed  Google Scholar 

  66. Nieuwboer A, Rochester L, Muncks L, et al. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15:S53–8.

    Article  PubMed  Google Scholar 

  67. Lopez W, Higuera C, Fonoff E, et al. Listenmee and Listenmee smartphone application: sychronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum Mov Sci. 2014;37:147–56.

    Article  PubMed  Google Scholar 

  68. Jiang Y, Norman K. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin Rehabil. 2006;20:36–45.

    Article  PubMed  Google Scholar 

  69. Luessi F, Mueller L, Breimhorst M, et al. Influence of visual cues on gait in Parkinson’s disease during treadmill walking at multiple velocities. J Neurol Sci. 2012;314:78–82.

    Article  CAS  PubMed  Google Scholar 

  70. Lee S, Yoo J, Ryu J, et al. The effect of visual and auditory cues on freezing of gait in patients with Parkinson’s disease. Am J Phys Med Rehabil. 2012;91:2–11.

    Article  PubMed  Google Scholar 

  71. Yogev G, Giladi N, Peretz C, et al. Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22:1248–56. doi:10.1111/j.1460-9568.2005.04298.x.

    Article  PubMed  Google Scholar 

  72. Rochester L, Nieuwboer A, Baker K, et al. The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: effect of cue modality and task complexity. J Neural Transm. 2007;114:1243–8.

    Article  CAS  PubMed  Google Scholar 

  73. Badarny S, Aharon-Peretz J, Susel Z, et al. Virtual reality feedback cues for improvement of gait in patients with Parkinson’s disease. Tremor Other Hyperkinet Mov (N Y) 2014;4:225. doi:10.7916/D8V69GM4.

  74. Hove M, Suzuki K, Uchitomi H, et al. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS One. 2012;7:e32600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao Y, Heida T, van Wegem E, et al. E-health support in people with Parkinson’s disease with smart glasses: a survey of user requirements and expectations in the Netherlands. J Parkinsons Dis. 2015;5:369–78.

    Article  PubMed  Google Scholar 

  76. Walton CC, Shine JM, Mowszowski L, et al. Impaired cognitive control in Parkinson’s disease patients with freezing of gait in response to cognitive load. J Neural Transm. 2015;122:653–60.

    Article  CAS  PubMed  Google Scholar 

  77. Walton CC, O’Callaghan C, Hall JM, et al. Antisaccade errors reveal cognitive control deficits in Parkinson’s disease with freezing of gait. J Neurol. 2015;262:2745–54. doi:10.1007/s00415-015-7910-5.

    Article  CAS  PubMed  Google Scholar 

  78. Shine JM, Naismith SL, Palavra NC, et al. Attentional set-shifting deficits correlate with the severity of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:388–90. doi:10.1016/j.parkreldis.2012.07.015.

    Article  CAS  PubMed  Google Scholar 

  79. Rochester L, Galna B, Lord S, et al. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience. 2014;265:83–94. doi:10.1016/j.neuroscience.2014.01.041.

    Article  CAS  PubMed  Google Scholar 

  80. Brown LA, McKenzie NC, Doan JB. Age-dependent differences in the attentional demands of obstacle negotiation. J Gerontol A Biol Sci Med Sci. 2005;60:924–7.

    Article  PubMed  Google Scholar 

  81. Pieruccini-Faria F, Ehgoetz Martens KA, Silveira C, et al. Interactions between cognitive and sensory load while planning and controlling complex gait adaptations in Parkinson’s disease. BMC Neurol. 2014;14. doi:10.1186/s12883-014-0250-8.

  82. Pompeu JE, Arduini LA, Botelho AR, et al. Feasibility, safety and outcomes of playing Kinect Adventures! for people with Parkinson’s disease: a pilot study. Physiotherapy (United Kingdom) 2014;100:162–8. doi:10.1016/j.physio.2013.10.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaylena A. Ehgoetz Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martens, K.A.E., Shine, J.M., Lewis, S.J.G. (2017). Using Virtual Reality to Advance the Understanding and Rehabilitation of Gait Impairments in Parkinson’s Disease. In: Barbieri, F., Vitório, R. (eds) Locomotion and Posture in Older Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-48980-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48980-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48979-7

  • Online ISBN: 978-3-319-48980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics