Hybridizing Cuckoo Search with Bio-inspired Algorithms for Constrained Optimization Problems

  • G. KanagarajEmail author
  • S. G. Ponnambalam
  • A. H. Gandomi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9873)


Constrained optimization problems are complex and highly nonlinear, optimal solutions of practical interest may not even exist. This paper investigates the hybridization of a standard Cuckoo search (CS) algorithm with genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. A new hybrid algorithms by adding positive properties of GA and PSO to the CS algorithms (denoted as CS-GA and CS-PSO, respectively) are proposed to solve for constrained optimization problems. According to the life style of cuckoo birds, each cuckoo will lay more than one egg at a time and always searching a better place to lay the eggs not to be discovered by the host birds, in order to increase the chance of eggs survival rate. By including evolution principles of GA or swarm intelligence of PSO in CS, it is possible to increase the optimization search space. The performance of hybrid algorithms developed in this paper is first tested with a well-known Himmelblau’s function and then further validated by solving four classical constrained optimization problems. Optimization results fully demonstrate the efficiency of the proposed approaches.



This research is supported by University Grant Commission, New Delhi under research Grant No. F-30-1/2014/RA-2014-16-OB-TAM-5658 (SA-II).


  1. 1.
    Gandomi, A.H., et al. (eds.): Metaheuristic Applications in Structures and Infrastructures, Chap. 1. Elsevier, Waltham (2013)Google Scholar
  2. 2.
    El-Ghazali, T.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)zbMATHGoogle Scholar
  3. 3.
    Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading (1989)zbMATHGoogle Scholar
  6. 6.
    Pezeshk, S., Camp, C.V.: State of the art on the use of genetic algorithms in design of steel structures, Chap. 3. In: Burns, S. (ed.) Recent Advances in Optimal Structural Design, 55–79 (2002)Google Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the Conference on Systems, Man, and Cybernetics SMC97, pp. 4104–4108 (1997)Google Scholar
  8. 8.
    Gopalakrishnan, K.: Particle swarm optimization in civil infrastructure systems: state-of-the-art review and case study, Chapt. 3. In: Gandomi, A.H., et al. (eds.) Metaheuristic Applications in Structures and Infrastructures. Elsevier, Waltham, MI (2013)Google Scholar
  9. 9.
    Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the Congress on Evolutionary Computation (1999)Google Scholar
  10. 10.
    Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53, 1168–1183 (2014)CrossRefGoogle Scholar
  11. 11.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kitayama, S., Arakawa, M., Yamazaki, K.: Differential evolution as the global optimization technique and its application to structural optimization. Appl. Soft Comput. 11, 3792–3803 (2011)CrossRefGoogle Scholar
  13. 13.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)Google Scholar
  14. 14.
    Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures by firefly algorithm. Struct. Des. Tall Spec. Build. 23, 350–361 (2014). doi: 10.1002/tal.1043 CrossRefGoogle Scholar
  15. 15.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Bat algorithm for constrained optimization tasks. Neural Comput Appl. 22, 1239–1255 (2013). doi: 10.1007/s00521-012-1028-9 CrossRefGoogle Scholar
  17. 17.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29, 17–35 (2013). doi: 10.1007/s00366-011-0241-y CrossRefGoogle Scholar
  18. 18.
    Gandomi, A.H., Talatahari, S., Yang, X.S., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Des. Tall Spec. Build. 22, 1330–1349 (2013). doi: 10.1002/tal.1033 CrossRefGoogle Scholar
  19. 19.
    Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications (2007)Google Scholar
  20. 20.
    Kanagaraj, G., Ponnambalam, S.G., Jawahar, N.: A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems. Comput. Ind. Eng. 66(4), 1115–1124 (2013)CrossRefGoogle Scholar
  21. 21.
    Kanagaraj, G., Ponnambalam, S.G., Jawahar, N., Nilakantan, J.M.: An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization. Eng. Optim. 46(10), 1331–1351 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226, 1830–1844 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2, 354 (2007)CrossRefGoogle Scholar
  24. 24.
    Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008)CrossRefGoogle Scholar
  25. 25.
    Shlesinger, M.F.: Mathematical physics: search research. Nature 443, 281–282 (2006)CrossRefGoogle Scholar
  26. 26.
    Yang, X.S., Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 40, 1616–1624 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Leccardi, M.: Comparison of three algorithms for Levy noise generation, p. 5. ENOC, Eindhoven (2005)Google Scholar
  28. 28.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  29. 29.
    Eberhart, R., Kennedy, J..: A new optimizer using particle swarm theory. In: IEEE Sixth International Symposium on Micro Machine Human Science (1995)Google Scholar
  30. 30.
    Ozcan, E., Mohan, C.: Particle swarm optimization: surfing the waves. In: Proceedings of the IEEE congress on evolutionary computation (CEC), pp. 1939–1944. IEEE, Piscataway (1999)Google Scholar
  31. 31.
    Himmelblau, D.M., Clark, B.J., Eichberg, M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)Google Scholar
  32. 32.
    Homaifar, A., Qi, C.X., Lai, S.H.: Constrained optimization via genetic algorithms. Simulation 62, 242–253 (1994)CrossRefGoogle Scholar
  33. 33.
    He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36, 585–605 (2004)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012).CrossRefGoogle Scholar
  35. 35.
    Carlos, A., Coello, C.: Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng. Syst. 17, 319–346 (2000)CrossRefGoogle Scholar
  36. 36.
    Thanedar, P.B., Vanderplaats, G.N.: Survey of discrete variable optimization for structural design. J. Struct. Eng. 121, 301–306 (1995)CrossRefGoogle Scholar
  37. 37.
    Lamberti, L., Pappalettere, C.: Move limits definition in structural optimization with sequential linear programming. Part II: numerical examples. Comput. Struct. 81, 215–238 (2003)CrossRefGoogle Scholar
  38. 38.
    Chickermane, H., Gea, H.C.: Structural optimization using a new local approximation method. Int. J. Numer. Meth. Eng. 39, 829–846 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  40. 40.
    Nowacki, H.: Optimization in pre-contract ship design. In: Lind, F.K., Williams, T.J. (eds.) Computer Applications in the Automation of Shipyard Operation and Ship Design, vol. 2, pp. 327–338. Elsevier, New York (1974)Google Scholar
  41. 41.
    Ray, T., Saini, P.: Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng. Optim. 33, 735–748 (2001)CrossRefGoogle Scholar
  42. 42.
    Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386–396 (2003)CrossRefGoogle Scholar
  43. 43.
    Zhang, M., Luo, W., Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178, 3043–3074 (2008)CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37, 395–413 (2009)CrossRefGoogle Scholar
  45. 45.
    Wang, L., Li, L.: An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 41, 947–963 (2010)CrossRefGoogle Scholar
  46. 46.
    Rekalitis, G.V., Ravindran, A., Ragshell, K.M.: Engineering Optimization: Methods and Applications. Wiley, New York (1983)Google Scholar
  47. 47.
    Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 14(4), 561–579 (2010)CrossRefGoogle Scholar
  48. 48.
    Saha, C., Das, S., Pal, K., Mukherjee, S.: Fuzzy rule-based penalty function approach for constrained optimization. IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2359985 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • G. Kanagaraj
    • 1
    Email author
  • S. G. Ponnambalam
    • 2
  • A. H. Gandomi
    • 3
  1. 1.Department of Mechanical EngineeringThiagarajar College of EngineeringMaduraiIndia
  2. 2.Advanced Engineering Platform, School of EngineeringMonash University MalaysiaBandar SunwayMalaysia
  3. 3.BEACON Center for the Study of Evolution in ActionMichigan State UniversityEast LansingUSA

Personalised recommendations