Advertisement

Black Hole Artificial Bee Colony Algorithm

  • Nirmala SharmaEmail author
  • Harish Sharma
  • Ajay Sharma
  • Jagdish Chand Bansal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9873)

Abstract

Artificial bee colony (ABC) is an efficient methodology to solve optimization problems. Here, in this article a modified variant of ABC, namely Black Hole ABC algorithm (BHABC) is proposed which is based on the natural space black hole (BH) phenomenon. In BHABC, the implementation of BH gives a high exploration ability while maintaining the original exploitation ability of the ABC algorithm. The suggested algorithm is judged against 12 benchmark test functions and accessed with original ABC and its two modifications, that are Best So Far ABC (BSFABC) and Modified ABC (MABC). The results reveals that BHABC is a competitive variant of ABC.

Keywords

Meta-heuristic optimization techniques Swarm intelligence Black hole operator 

References

  1. 1.
    Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)CrossRefGoogle Scholar
  2. 2.
    Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in Artificial Bee Colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)CrossRefGoogle Scholar
  3. 3.
    Bansal, J.C., Sharma, H., Arya, K.V., Deep, K., Pant, M.: Self-adaptive artificial bee colony. Optimization 63(10), 1513–1532 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bansal, J.C., Sharma, H., Arya, K.V., Nagar, A.: Memetic search in artificial bee colony algorithm. Soft. Comput. 17(10), 1911–1928 (2013)CrossRefGoogle Scholar
  5. 5.
    Bansal, J.C., Sharma, H., Jadon, S.S.: Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Paradigms 5(1), 123–159 (2013)Google Scholar
  6. 6.
    Bansal, J.C., Sharma, H., Nagar, A., Arya, K.V.: Balanced artificial bee colony algorithm. Int. J. Artif. Intell. Soft Comput. 3(3), 222–243 (2013)CrossRefGoogle Scholar
  7. 7.
    Bansal, J.C., Sharma, H.: Cognitive learning in differential evolution and its application to model order reduction problem for single-input single-output systems. Memetic Comput. 4(3), 209–229 (2012)CrossRefGoogle Scholar
  8. 8.
    Doraghinejad, M., Nezamabadi-pour, H., Sadeghian, A.H., Maghfoori, M.: A hybrid algorithm based on gravitational search algorithm for unimodal optimization. In: 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE), pp. 129–132. IEEE (2012)Google Scholar
  9. 9.
    Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jadon, S.S., Bansal, J.C., Tiwari, R., Sharma, H.: Expedited artificial bee colony algorithm. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) Proceedings of the Third International Conference on Soft Computing for Problem Solving, vol. 259, pp. 787–800. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)CrossRefGoogle Scholar
  13. 13.
    Montgomery, C., Orchiston, W., Whittingham, I.: Michell, Laplace and the origin of the black hole concept. J. Astron. Hist. Heritage 12, 90–96 (2009)Google Scholar
  14. 14.
    Sharma, H., Bansal, J.C., Arya, K.V.: Opposition based lévy flight artificial bee colony. Memetic Comput. 5(3), 213–227 (2013)CrossRefGoogle Scholar
  15. 15.
    Sharma, H., Bansal, J.C., Arya, K.V.: Power law-based local search in artificial bee colony. Int. J. Artif. Intell. Soft Comput. 4(2), 164–194 (2014)CrossRefGoogle Scholar
  16. 16.
    Sharma, H., Bansal, J.C., Arya, K.V., Deep, K.: Dynamic swarm Artificial Bee Colony algorithm. Int. J. Appl. Evol. Comput. (IJAEC) 3(4), 19–33 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Liu, K., Tan, Y., He, X.: Random black hole particle swarm optimization and its application. In: 2008 International Conference on Neural Networks and Signal Processing, pp. 359–365. IEEE (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nirmala Sharma
    • 1
    Email author
  • Harish Sharma
    • 1
  • Ajay Sharma
    • 2
  • Jagdish Chand Bansal
    • 3
  1. 1.Rajasthan Technical UniversityKotaIndia
  2. 2.Government Engineering CollegeJhalawarIndia
  3. 3.South Asian UniversityNew DelhiIndia

Personalised recommendations