Advertisement

Particle Swarm Optimization Based on the Winner’s Strategy

  • Shailendra S. Aote
  • M. M. RaghuwanshiEmail author
  • L. G. Malik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9873)

Abstract

This paper presents particle swarm optimization based on winner’s strategy (PSO-WS). Instead of considering gbest and pbest particle for position update, each particle considers its distance from immediate winner to update its position. If this strategy performs well for the particle, then that particle updates its position based on this strategy, otherwise its position is replaced by its immediate winner particle’s position. Dimension dependant swarm size is used for better exploration. Proposed method is compared with CSO and CCPSO2, which are available to solve large scale optimization problems. Statistical results show that proposed method performs well for separable as well as non separable problems.

Keywords

Particle swarm optimization Winners strategy Large scale optimization 

References

  1. 1.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Network, Perth, Australia 1995, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Li, X., Deb, K.: Comparing lbest PSO niching algorithms using different position update rules. In: WCCI 2010 IEEE World Congress on Computational Intelligence 18–23 July, 2010 - CCIB, Barcelona, Spain, pp. 1564–1571 (2010)Google Scholar
  3. 3.
    Qu, B.Y., Suganthan, P.N., Das, Swagatam: A distance-based locally informed particle swarm model for multi-modal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)CrossRefGoogle Scholar
  4. 4.
    Wang, H., Moon, I., Yang, S., Wang, D.: A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf. Sci. 197, 38–52 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhan, Z.H., Zhang, J., Li, Y.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  6. 6.
    Kiranyaz, S., Ince, T., Yildirim, A., Gabbouj, M.: Fractional particle swarm optimization in multidimensional search space. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(2), 298–319 (2010)CrossRefGoogle Scholar
  7. 7.
    Mirjalili, S., Lewis, A., Sadiq, A.S.: Autonomous particles groups for particle swarm optimization. Arab. J Sci. Eng. 39, 4683–4697 (2014)CrossRefGoogle Scholar
  8. 8.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, pp. 69–73 (1998)Google Scholar
  9. 9.
    van den Bergh, F.: An analysis of particle swarm optimizers, Ph.D. dissertation, Department of Computer Science, University of Pretoria, Pretoria, South Africa (2002)Google Scholar
  10. 10.
    Wang, H., et al.: Opposition-based particle swarm algorithm with cauchy mutation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4750–4756 (2007)Google Scholar
  11. 11.
    Yang, S., Wang, M.: A quantum particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), pp. 320–324 (2004)Google Scholar
  12. 12.
    Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(6), 1272–1282 (2005)CrossRefGoogle Scholar
  13. 13.
    Evers, G.I., Ghalia, M.B.: Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3901–3908 (2009)Google Scholar
  14. 14.
    van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  15. 15.
    Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2986–2999 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cui, Z.; Zeng, J.; Yin, Y.: An improved PSO with time-varying accelerator coefficients. In: Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, pp. 638–643 (2008)Google Scholar
  17. 17.
    Ziyu, T., Dingxue, Z.: A modified particle swarm optimization with an adaptive acceleration coefficients. In: Asia-Pacific Conference on Information Processing, Shenzhen, pp. 330–332 (2009)Google Scholar
  18. 18.
    Bao, G.Q., Mao, K.F.: Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. In: IEEE International Conference on Robotics and Biomimetics, Guilin, pp. 2134–2139 (2009)Google Scholar
  19. 19.
    Dai, Y., Liu, L., Li, Y.: An intelligent parameter selection method for particle swarm optimization algorithm. In: Fourth International Joint Conference on Computational Sciences and Optimization, pp. 960–964 (2011)Google Scholar
  20. 20.
    Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  21. 21.
    Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive variable partitioning. In: Proceedings of IEEE CEC, May 2009, pp. 983–999 (2009)Google Scholar
  22. 22.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: Proceedings of IEEE CEC, June 2008, pp. 3845–3852 (2008)Google Scholar
  23. 23.
    Shen, X., Chi, Z., Yang, J., Chen, C.: Particle swarm optimization with dynamic adaptive inertia weight. In: International Conference on Challenges in Environmental Science and Engineering, pp 287–289 (2010)Google Scholar
  24. 24.
    Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling techniques in particle swarm optimization. In: IEEE (2011)Google Scholar
  25. 25.
    Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: WCCI 2010 IEEE World Congress on Computational Intelligence, 18–23 July, 2010 - CCIB, Barcelona, Spain, pp. 1762–1769 (2010)Google Scholar
  26. 26.
    Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N.: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf. Sci. 216, 50–92 (2012)CrossRefGoogle Scholar
  27. 27.
    Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)CrossRefGoogle Scholar
  28. 28.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of IEEE International Congress on Evolutionary Computation, vol. 3, pp. 101–106 (1999)Google Scholar
  29. 29.
    Bonyadi, M.R., Michalewicz, Z., Li, X.: An analysis of the velocity updating rule of the particle swarm optimization algorithm. J. Heuristics 20(4), 417–452 (2014)CrossRefGoogle Scholar
  30. 30.
    Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bonyadi, M.R., Michalewicz, Z.: A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intell. 8(3), 159–198 (2014)CrossRefGoogle Scholar
  32. 32.
    Tang, K., Yáo, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark functions for the CEC 2008 special session and competition on large scale global optimization, Nature Inspired Computation and Applications Laboratory, University of Science and Technology, Hefei, China, Technical report (2007). http://nical.ustc.edu.cn/cec08ss.php
  33. 33.
    Cheng, Ran, Jin, Yaochu: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large scale optimization. Soft. Comput. 15(11), 2175–2185 (2011). doi: 10.1007/s00500-010-0645-4 CrossRefGoogle Scholar
  35. 35.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, pp. 3845–3852, Hong Kong, June 2008Google Scholar
  36. 36.
    Hao, Z., Guo, G., Huang, H.: A particle swarm optimization algorithm with differential evolution. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1031–1035 (2007)Google Scholar
  37. 37.
    Omran, M.G., Engelbrecht, A.P., Salman, A.: Differential evolution based particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp. 112–119 (2007)Google Scholar
  38. 38.
    Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: IEEE, pp. 1931–1938 (2009)Google Scholar
  39. 39.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the Congress on Evolutionary Computation, pp. 1671–1676 (2002)Google Scholar
  40. 40.
    Mendes, R.: Population topologies and their influence in particle swarm performance, Ph.D. dissertation, Escola de Engenharia, Universidade do Minho, Portugal (2004)Google Scholar
  41. 41.
    Emara, H.M.: Adaptive clubs-based particle swarm optimization. In: American Control Conference 2009, ACC 2009, pp. 5628–5634 (2009)Google Scholar
  42. 42.
    Elsayed, S.M., Sarker, R.A. and Essam, D.L.: Memetic multi-topology particle swarm optimizer for constrained optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)Google Scholar
  43. 43.
    Gong, Y.J., Zhang, J.: Small-world particle swarm optimization with topology adaptation. In: Proceedings of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 25–32 (2013)Google Scholar
  44. 44.
    Liang, S., Song, S., Kong, L. Cheng, J.: An improved particle swarm optimization algorithm and its convergence analysis. In: Second International Conference on Computer Modeling and Simulation, pp. 138–141 (2010)Google Scholar
  45. 45.
    Bird, S., Li, X.: Improving local convergence in particle swarms by fitness approximation using regression. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems, pp. 265–293. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  46. 46.
    Chen, W.N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.H., Chung, H.S.H., Li, Y., Shi, Y.H.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)CrossRefGoogle Scholar
  47. 47.
    Qu, B.Y., Suganthan, P.N., Das, S.: A distance-based locally informed particle swarm model for multi-modal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Shailendra S. Aote
    • 1
  • M. M. Raghuwanshi
    • 2
    Email author
  • L. G. Malik
    • 3
  1. 1.Department of CSERCOEMNagpurIndia
  2. 2.YCCENagpurIndia
  3. 3.CSEGHRCENagpurIndia

Personalised recommendations