Advertisement

Region Based Multiple Features for an Effective Content Based Access Medical Image Retrieval an Integrated with Relevance Feedback Approach

  • B. JyothiEmail author
  • Y. MadhaveeLatha
  • P. G. Krishna Mohan
  • V. S. K. Reddy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9873)

Abstract

An efficient Content-based medical image retrieval (CBMIR) system is imperative to browse the entire database to locate required medical image. This paper proposes an effective scheme includes the detection of the boundary of the image followed by exploring the content of the interior boundary region with the help of multiple features. The proposed technique integrates the Texture, Shape features and the relevance feedback mechanism. Differentiate of Gabor Filter used for Texture feature extraction and Moments extract the Region based shape features. The Euclidean distance is used for similarity measure and then these distances are sorted out and ranked. The Recall rate of the medical retrieval system has been enhanced by adapting Relevance Feedback mechanism. The efficiency of the proposed method has been evaluated by using a huge data base by employing multiple features and integrating with Relevance feedback approach. Correspondingly, the Recall Rate has been enormously enhanced and Error Rate has been reduced as compared to the existing classical retrieval methods.

Keywords

Content based image retrieval Boundary detection Feature extraction Relevance feedback 

References

  1. 1.
    Khoo, L.A., Taylor, P., Given-Wilson, R.M.: Computer-aided detection in the United Kingdom national breast screening programme: prospective study. Radiology 237, 444–449 (2005)CrossRefGoogle Scholar
  2. 2.
    Muller, H., Michous, N., Bandon, D., Geissbuhler, A.: A review of content based image retrieval systems in medical applications — clinical benefits and future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)CrossRefGoogle Scholar
  3. 3.
    Flickner, M., et al.: Query by image and video content. IEEE Comput. 28(9), 23–32 (1995)CrossRefGoogle Scholar
  4. 4.
    Furht, B., Smoliar, S.W., Zhang, H.J.: Image and Video Processing in Multimedia Systems. Kluwer Academic Publishers, Norwell (1995)CrossRefGoogle Scholar
  5. 5.
    Greenspan, H., Pinhas, A.T.: Medical image categorization and retrieval for PAC Suing the GMM-KL framework. IEEE Trans. Inf. Techol. Biomed. 11(2), 190–202 (2007)CrossRefGoogle Scholar
  6. 6.
    Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture and shape features. In: Proceedings of the 15th International Conference on Advanced Computing and Communications, Guwahati, Inde, pp. 780–784, December 2007Google Scholar
  7. 7.
    Somkantha, K., Theera-Umpon, N.: Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features. IEEE Trans. Biomed. Eng. 58(3), 567–573 (2011)CrossRefGoogle Scholar
  8. 8.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content Description Interface. Wiley, Chichester (2002)Google Scholar
  9. 9.
    Vogel, J., Schiele, B.: Performance evaluation and optimization for content- based image retrieval. Pattern Recognit. 39(5), 897–909 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. IT 8, 179–187 (1962)zbMATHGoogle Scholar
  11. 11.
    Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis: Theory and Applications. World Scientific Publication Co., Singapore (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Han, J., Ma, K.K.: Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image Vis. Comput. 25(9), 1474–1481 (2007)CrossRefGoogle Scholar
  13. 13.
    Messer, K., et al.: Face authentication test on the BANCA database. In: International Conference on Pattern Recognition (ICPR) (2004)Google Scholar
  14. 14.
    Patil, P.B., Kokare, M.B.: Relevance feedback in content based image retrieval a review. J. Appl. Comput. Sci. Math. 10(5), 41–47 (2011)Google Scholar
  15. 15.
    Hoi, C.H., Lyu, M.R.: A novel log based relevance feedback technique in content based image retrieval. In: proceedings of the ACM Multimedia (ACM-MM 2004), New york, USA, pp. 24–31 (2004)Google Scholar
  16. 16.
    Cheng, E., Jin, F., Zhang, L.: Unified relevance feedback framework for web image retrieval. IEEE Trans. Image Process. 18(6), 1350–1357 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhou, X.S., Hung, T.S.: Relevance feedback in image retrieval: a comprehensive review. In: A Review for ACM Multimedia System Journal Shoter Version, IEEE CVPR 2001, workshop on Content Based Access Image and Video Libravies(LBAIVL)Google Scholar
  18. 18.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)CrossRefGoogle Scholar
  19. 19.
    wang, X.-Y, Yu, Y.-J., Yang, H.-Y.: An effective image retrieval scheme using color, texture and shape features. Comput. Stand. Interfaces CSI, p. 10. 02706Google Scholar
  20. 20.
    Jyothi, B., MadhaveeLatha, Y., Mohan, P.G.K.: Multidimetional feature space for an effective content based medical image retrieval. In: IACC-2015, pp. 67–71 (2015)Google Scholar
  21. 21.
    Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kumar, P.: Image retrieval relevance feedback algorithms: trends and techniques. Int. J. Sci. Eng. Technol. 2(1), 13–21 (2013). (ISSN: 22771581)MathSciNetGoogle Scholar
  23. 23.
    El-Naga, I., Yang, Y., Galatsanos, N.P., Nishikawa, R.M., Wernick, M.N.: A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans. Med. Imaging 23(10), 1233–1244 (2004)CrossRefGoogle Scholar
  24. 24.
    Petpon, A., Srisuk, S.: Face recognition with local line binary pattern. In: 2009 Fifth International Conference on Image and Graphics, 978-0-7695-3883-9/09. IEEE Computer society (2009)Google Scholar
  25. 25.
    Kamarainen, J.-K., Kyrki, V., Kalviainen, H.: Invariance properties of Gabor filter based features-overview and applications. IEEE Trans. Image Process. 15(5), 1088–1099 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • B. Jyothi
    • 1
    Email author
  • Y. MadhaveeLatha
    • 2
  • P. G. Krishna Mohan
    • 3
  • V. S. K. Reddy
    • 4
  1. 1.Department of ECEMRCET, JNTUHHyderabadIndia
  2. 2.Department of ECEMRECW, JNTUHHyderabadIndia
  3. 3.Department of ECEIAREHyderabadIndia
  4. 4.Department of ECEMRCETHyderabadIndia

Personalised recommendations