Self-adaptive Ensemble Differential Evolution with Sampled Parameter Values for Unit Commitment

  • Nandar Lynn
  • Rammohan Mallipeddi
  • Ponnuthurai Nagaratnam SuganthanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9873)


In literature, empirically and theoretically, it has been well-demonstrated that the performance of differential evolution (DE) is sensitive to the choice of the mutation and crossover strategies and their associated control parameters. According to the No Free Lunch theorem, a single set of well-tuned combination of strategies and their associated parameter combination is not suitable for optimization problems having different characteristics. In addition, different mutation and crossover strategies with different parameter settings can be appropriate during different stages of the evolution. Based on this observation, DE with an ensemble of mutation and crossover strategies and their associated control parameters referred to as EPSDE was proposed. However, it has been observed that the fixed discrete parameter values as in EPSDE may not yield optimal performance. In this paper, we propose self-adaptive DE algorithm (Sa-EPSDE) with a set of mutation strategies while their associated parameter values F and CR are sampled using mean and standard deviation values. In addition, the probability of selecting a combination to produce an offspring at a particular generation during the evolution process depends on the success of the combination. The performance of the proposed Sa-EPSDE algorithm is evaluated on a set of 14 bound-constrained problems designed for Conference on Evolutionary Computation (CEC) 2005. In order to validate the performance of proposed Sa-EPSDE algorithm on real-world applications, the algorithm is hybridized with a simple priority listing method and applied to solve unit commitment problem by considering 10-, 20-, 40-, 60-, 80- and 100-bus systems for one day scheduling period. The results showed that the proposed method obtained superior performance against other compared algorithms.


Differential evolution Global optimization Parameter adaptation Ensemble Mutation strategy adaptation Unit commitment Scheduling 



This work was supported by the Singapore National Research Foundation (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, and Cambridge Advanced Research Centre in Energy Efficiency in Singapore (CARES), C4T project.


  1. 1.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15, 4–31 (2011)CrossRefGoogle Scholar
  2. 2.
    Das, S., Konar, A.: Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9(1), 226–236 (2009)CrossRefGoogle Scholar
  3. 3.
    Mallipeddi, R., et al.: Efficient constraint handling for optimal reactive power dispatch problems. Swarm Evol. Comput. 5, 28–36 (2012)CrossRefGoogle Scholar
  4. 4.
    Mallipeddi, R., et al.: Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch. Prog. Electromagn. Res. Lett. 25, 37–46 (2011)CrossRefGoogle Scholar
  5. 5.
    Venu, M.K., Mallipeddi, R., Suganthan, P.N.: Fiber Bragg grating sensor array interrogation using differential evolution. Optoelectron. Adv. Mater. Rapid Commun. 2, 682–685 (2008)Google Scholar
  6. 6.
    Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. In: Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298. WSEAS Press, Interlaken, Switzerland (2002)Google Scholar
  7. 7.
    Liu, J., Lampinen. J.: On setting the control parameter of the differential evolution method. In: Proceedings of MENDEL 2002 8th International Conference on Soft Computing (2002)Google Scholar
  8. 8.
    Jingqiao, Z., Sanderson. A.C.: An approximate gaussian model of differential evolution with spherical fitness functions. In: IEEE Congress on Evolutionary Computation (2007)Google Scholar
  9. 9.
    Mallipeddi, R., Mallipeddi, S., Suganthan, P.N., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Omran, Mahamed, G.,H., Salman, A., Engelbrecht, Andries, P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005). doi: 10.1007/11596448_28 CrossRefGoogle Scholar
  11. 11.
    Brest, J., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  12. 12.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)CrossRefGoogle Scholar
  13. 13.
    Tvrdik, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Compu. 9, 1149–1155 (2009)CrossRefGoogle Scholar
  14. 14.
    Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 71–78. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17563-3_9 CrossRefGoogle Scholar
  15. 15.
    Tanabe, R., Fukunaga. A.: Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: IEEE Congress on Evolutionary Computation (2013)Google Scholar
  16. 16.
    Tanabe, R., Fukunaga. A.S.: Improving the search performance of SHADE using linear population size reduction. In: IEEE Congress on Evolutionary Computation (2014)Google Scholar
  17. 17.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)zbMATHGoogle Scholar
  18. 18.
    Zaharie, D.: Critical values for the control parameters of differential evolution. In: Proceedings of 8th International Conference on Soft Computing, MENDEL 2002, Brno, Czech Republic (2002)Google Scholar
  19. 19.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft. Comput. 9, 448–462 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Proceedings of the 9th International Conference on Soft Computing, Brno, pp. 41–46 (2003)Google Scholar
  21. 21.
    Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: IEEE Congress on Evolutionary Computation, pp. 831–836 (2002)Google Scholar
  22. 22.
    Zhang, J.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)CrossRefGoogle Scholar
  23. 23.
    Shi-Zheng, Z., Suganthan. P.N.: Comprehensive comparison of convergence performance of optimization algorithms based on nonparametric statistical tests. In: IEEE Congress on Evolutionary Computation (2012)Google Scholar
  24. 24.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 1–50 (2005)Google Scholar
  25. 25.
    Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11, 83–92 (1996)CrossRefGoogle Scholar
  26. 26.
    Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14, 1452–1459 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nandar Lynn
    • 1
  • Rammohan Mallipeddi
    • 2
  • Ponnuthurai Nagaratnam Suganthan
    • 1
    Email author
  1. 1.School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Electronics EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations