Skip to main content

Domain Adaptation for Image Analysis: An Unsupervised Approach Using Boltzmann Machines Trained by Perturbation

  • Conference paper
  • First Online:
Advances in Systems Science (ICSS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 539))

Included in the following conference series:

  • 981 Accesses

Abstract

In this paper, we apply Restricted Boltzmann Machine and Subspace Restricted Boltzmann Machine to domain adaptation. Moreover, we train these models using the Perturb-and-MAP approach to draw approximate sample from the Gibbs distribution. We evaluate our approach on domain adaptation task between two image corpora: MNIST and Handwritten Character Recognition dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathbb {I}[\cdot ]\) denotes the indicator function, and \(\odot \) is the element-wise multiplication.

  2. 2.

    The original HCR is scaled to fit MNIST images.

  3. 3.

    RBM and sRBM trained with contrastive divergence (CD) and PD are denoted by RBM-CD and sRBM-CD, and RBM-PD and sRBM-PD, respectively.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chelba, C., Acero, A.: Adaptation of maximum entropy capitalizer: little data can help a lot. Comput. Speech Lang. 20(4), 382–399 (2006)

    Article  Google Scholar 

  4. Daumé III., H., Frustratingly easy domain adaptation. arXiv preprint arXiv: 0907.1815 (2009)

  5. Daume III, H., Marcu, D.: Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 26, 101–126 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of The 32nd International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  7. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 513–520 (2011

    Google Scholar 

  8. Hazan, T., Jaakkola, T.: On the partition function and random maximum a-posteriori perturbations. In: ICML (2012)

    Google Scholar 

  9. Hazan, T., Maji, S., Jaakkola, T.: On sampling from the gibbs distribution with random maximum a-posteriori perturbations. In: NIPS, pp. 1268–1276 (2013)

    Google Scholar 

  10. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinton, G.E., Sejnowski, T.J.: Learning and relearning in Boltzmann machines. Parallel Distrib. Process. Explor. Microstruct. Cogn. 1, 282–317 (1986)

    Google Scholar 

  12. Jiang, J.: A literature survey on domain adaptation of statistical classifiers. Technical Report http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.pdf

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Li, X., Bilmes, J.: A bayesian divergence prior for classiffier adaptation. In: International Conference on Artificial Intelligence and Statistics, pp. 275–282 (2007)

    Google Scholar 

  15. Liu, A., Ziebart, B.: Robust classification under sample selection bias. In: Advances in Neural Information Processing Systems, pp. 37–45 (2014)

    Google Scholar 

  16. Long, M., Wang, J., Ding, G., Pan, S.J., Yu, P.S.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2014)

    Article  Google Scholar 

  17. Orabona, F., Hazan, T., Sarwate, A., Jaakkola, T.: On measure concentration of random maximum a-posteriori perturbations. In: ICML, pp. 432–440 (2014)

    Google Scholar 

  18. Papandreou, G., Yuille, A., Perturb-and-map random fields: using discrete optimization to learn and sample from energy models. In: ICCV, pp. 193–200 (2011)

    Google Scholar 

  19. Ravanbakhsh, S., Greiner, R., Frey, B.: Machine, Training Restricted Boltzmann by Perturbation. arXiv preprint arXiv: 1405.1436 (2014)

  20. Sejnowski, T.: Higher-order Boltzmann machines. In: AIP Conference Proceedings, vol. 151, pp. 398–403 (1986)

    Google Scholar 

  21. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 194–281. MIT Press (1986)

    Google Scholar 

  22. Tomczak, J.M.: On some properties of the low-dimensional Gumbel perturbations in the Perturb-and-MAP model. Stat. Probab. Lett. 115, 8–15 (2016). http://dx.doi.org/10.1016/j.spl.2016.03.019

    Article  MathSciNet  MATH  Google Scholar 

  23. Tomczak, J.M., Gonczarek, A.: Learning Invariant Features Using Subspace Restricted Boltzmann Machine. Neural Process. Lett. 1–10 (2016). doi:10.1007/s11063-016-9519-9

  24. Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with multi model knowledge transfer. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 928–941 (2014)

    Article  Google Scholar 

  25. Van der Maaten, L.: A new benchmark dataset for handwritten character recognition, pp. 2–5. Tilburg University (2009)

    Google Scholar 

  26. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Acknowledgments

The work presented in the paper is partially co-financed by the Ministry of Science and Higher Education in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub M. Tomczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zaręba, S., Kocot, M., Tomczak, J.M. (2017). Domain Adaptation for Image Analysis: An Unsupervised Approach Using Boltzmann Machines Trained by Perturbation. In: Świątek, J., Tomczak, J. (eds) Advances in Systems Science. ICSS 2016. Advances in Intelligent Systems and Computing, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-319-48944-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48944-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48943-8

  • Online ISBN: 978-3-319-48944-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics