Skip to main content

Defects in Monocrystalline Silicon

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

The aggregation of instrinsic point defects (vacancies and Si interstitials) in monocrystalline silicon has a major impact on the functioning of electronic devices. While agglomeration of vacancies results in the formation of tiny holes (so-called voids, around 100 nm in size, which have almost no stress field), the aggregation of Si interstitials exerts considerable stress on the Si matrix, which, beyond a critical size, generates a network of dislocation loops around the original defect. These dislocation loops are typically microns in size. Consequently, they are much more harmful to device functioning than vacancy clusters. However, the feature size in electronic devices has now shrunk below the 100 nm scale, meaning that vacancy aggregates are also no longer acceptable to many device manufacturers.

This chapter is intended to give an introduction to the properties of intrinsic point defects in silicon and the nucleation and growth of their aggregates. Knowledge in this field has grown further over the last decade. It is now possible to accurately simulate the aggregation process so that the defect behavior of semiconductor silicon can be precisely tailored to the needs of the device manufacturer. Additionally, the impact of various impurities on the aggregation process is elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.M. Petroff, A.J.R. de Kock: J. Cryst. Growth 30, 117 (1975)

    CAS  Google Scholar 

  2. S. Sadamitsu, S. Umeno, Y. Koike, M. Hourai, S. Sumita, T. Shigematsu: Jpn. J. Appl. Phys. 32, 3675 (1993)

    CAS  Google Scholar 

  3. L.I. Bernewitz, B.O. Kolbesen, K.R. Mayer, G.E. Schuh: Appl. Phys. Lett. 25, 277 (1975)

    Google Scholar 

  4. B.O. Kolbesen, A. Mühlbauer: Solid State Electron. 25, 759 (1982)

    CAS  Google Scholar 

  5. W. Bergholz, W. Mohr, W. Drewes: Mater. Sci. Eng. B4, 359 (1989)

    CAS  Google Scholar 

  6. M. Itsumi, H. Akiya, T. Ueki, M. Tomita, M. Yamawaki: J. Appl. Phys. 78(10), 5984 (1995)

    CAS  Google Scholar 

  7. M. Miyazaki, S. Miyazaki, Y. Yanase, T. Ochiai, T. Shigematsu: Jpn. J. Appl. Phys. 34, 6303 (1995)

    CAS  Google Scholar 

  8. J.G. Park, J.M. Park, K.C. Cho, G.S. Lee, H.K. Chung: Effect of crystal defects in device characteristics, Proc. 2nd Int. Symp.Adv. Sci. Technol. Silicon Materials, Kona-Hawaii, ed. by M. Umeno (1996) p. 2519

    Google Scholar 

  9. M. Itsumi: Mater. Sci. Eng. B73, 184 (2000)

    CAS  Google Scholar 

  10. T. Bearda, M. Houssa, P. Mertens, J. Vanhellemont, M. Heyns: Appl. Phys. Lett. 75(9), 1255 (1999)

    CAS  Google Scholar 

  11. U. Lambert, A. Huber, J. Grabmeier, J. Vanhellemont, R. Wahlich, G. Kissinger: Microelectron. Eng. 48, 127 (1999)

    CAS  Google Scholar 

  12. E. Dornberger, D. Temmler, W. v. Ammon: J. Electrochem. Soc. 149(4), G226 (2002)

    CAS  Google Scholar 

  13. C. Kupfer, H. Roth, H. Dietrich: Mat. Sci. Semicon. Proc. 5, 381 (2003)

    Google Scholar 

  14. A.M. Eidenzon, N.I. Puzanov: Inorg. Mater. 33(3), 272 (1997)

    Google Scholar 

  15. J.G. Park, H.K. Chung: Wafer requirements: Memory devices, Proc. Silicon Wafer Symp., Portland (1999) p. D1

    Google Scholar 

  16. J.G. Park: J. Jpn. Assoc. Cryst. Growth 27(2), 14 (2000)

    CAS  Google Scholar 

  17. R. Falster: Advances of the defect engineering of polished silicon wafers: Perfect silicon and magic denuded zones, Proc. Silicon Wafer Symp., Portland (1999) p. E13

    Google Scholar 

  18. D. Gräf, M. Suhren, U. Lambert, R. Schmolke, A. Ehlert, W. v. Ammon, P. Wagner: J. Electrochem. Soc. 145(1), 275 (1998)

    Google Scholar 

  19. X. Yu, D. Yang, X. Ma, L. Li, D. Que: Semicond. Sci. Technol. 18, 399 (2003)

    CAS  Google Scholar 

  20. K. Sumino, I. Yonenaga, M. Imai, T. Abe: J. Appl. Phys. 54(9), 5016 (1983)

    CAS  Google Scholar 

  21. L. Jastrzebski, G.W. Cullen, R. Soydan, G. Harbeke, J. Lagowski, S. Vecrumba, W.N. Henry: J. Electrochem. Soc. 134(2), 466 (1987)

    CAS  Google Scholar 

  22. G. Wang, D. Yang, D. Li, Q. Shui, J. Yang, D. Que: Physica B 308–310, 450 (2001)

    Google Scholar 

  23. D. Maroudas, R. Brown: Appl. Phys. Lett. 62(2), 172 (1993)

    CAS  Google Scholar 

  24. A. Seeger, K.P. Chik: Phys. Status Solidi A 29, 455 (1968)

    CAS  Google Scholar 

  25. H.R. Schober: Phys. Rev. B 39, 13013 (1989)

    CAS  Google Scholar 

  26. R. Car, P.J. Kelly, A. Oshiyama, S.T. Pantelides: Phys. Rev. Lett. 52, 1814 (1984)

    CAS  Google Scholar 

  27. D. Maroudas, R. Brown: Phys. Rev. B 47(23), 15562 (1993)

    CAS  Google Scholar 

  28. G.D. Watkins: Mater. Sci. Semicond. Process. 3, 227 (2000)

    CAS  Google Scholar 

  29. N.A. Stolwijk, J. Holzl, W. Frank, E.R. Weber, H. Mehrer: Appl. Phys. A 39, 37 (1986)

    Google Scholar 

  30. H. Bracht, N.A. Stolwijk, H. Mehrer: Phys. Rev. B 52, 16542 (1995)

    CAS  Google Scholar 

  31. H. Zimmermann, H. Ryssel: Appl.Phys. A 55, 121 (1992)

    Google Scholar 

  32. H. Bracht: Native point defects in silicon, Proc. 3rd Int. Symp. Defects Silicon III, Seattle, ed. by T. Abe, W.M. Bullis, S. Kobayashi, W. Lin, P. Wagner (1999) p. 357

    Google Scholar 

  33. W. v. Ammon, E. Dornberger, H. Oelkrug, H. Weidner: J. Cryst. Growth 151, 273 (1995)

    Google Scholar 

  34. M. Hourai, E. Kajita, T. Nagashima, H. Fujiwara, S. Umeno, S. Sadamitsu, S. Miki, T. Shigematsu: Mater. Sci. Forum 196–201, 1713 (1995)

    Google Scholar 

  35. E. Dornberger, W. v. Ammon: J. Electrochem. Soc 143(5), 1648 (1996)

    CAS  Google Scholar 

  36. T. Sinno, R.A. Brown, W. v. Ammon, E. Dornberger: Appl. Phys. Lett. 70(17), 2250 (1997)

    CAS  Google Scholar 

  37. M. Akatsuka, M. Okui, N. Morimoto, K. Sueoka: Jpn. J. Appl. Phys. 40, 3055 (2001)

    CAS  Google Scholar 

  38. R. Falster, V.V. Voronkov, F. Quast: Phys. Status Solidi B 222, 219 (2000)

    CAS  Google Scholar 

  39. N. Fukata, A. Kasuya, M. Suezawa: Jpn. J. Appl. Phys. 40, L854 (2001)

    CAS  Google Scholar 

  40. D.A. Antoniadis, I. Moskowitz: J. Appl. Phys. 53(10), 6780 (1982)

    Google Scholar 

  41. H.J. Gossmann, C.S. Rafferty, A.M. Vredenberg, H.S. Luftman, F.C. Unterwald, D.J. Eaglesham, D.C. Jacobson, T. Boone, J.M. Poate: Appl. Phys. Lett. 64(3), 312 (1994)

    CAS  Google Scholar 

  42. T. Sinno: Thermophysical properties of intrinsic point defects in crystalline silicon, Proc. 9th Int. Symp.Silicon Mater. Sci. Technol. Semicond. Silicon, Philadelphia, ed. by H.R. Huff, L. Fabry, S. Kishino (The Electrochemical Society, Pennington 2002) p. 212

    Google Scholar 

  43. T. Frewen, T. Sinno, E. Dornberger, R. Hoelzl, W. v. Ammon, H. Bracht: J. Electrochem. Soc. 150(11), G673 (2003)

    CAS  Google Scholar 

  44. K. Nakamura, R. Suewaka, B. Ko: ECS Solid State Lett. 3(3), N5 (2014)

    CAS  Google Scholar 

  45. K. Sueoka, E. Kamiyama, J. Vanhellemont, K. Nakamura: ECS Solid State Lett. 3(6), P69 (2014)

    CAS  Google Scholar 

  46. K. Sueoka, E. Kamiyama, J. Vanhellemont: J. Appl. Phys. 114, 153510 (2013)

    Google Scholar 

  47. T. Ueki, M. Itsumi, T. Takeda: Jpn. J. Appl. Phys. 37, 1669 (1998)

    Google Scholar 

  48. M. Itsumi: J. Cryst. Growth 237–239, 1773 (2002)

    Google Scholar 

  49. S. Umeno, Y. Yanase, M. Hourai, M. Sano, Y. Shida, H. Tsuya: Jpn. J. Appl. Phys. 38, 5725 (1999)

    CAS  Google Scholar 

  50. M. Nishimura, Y. Yamaguchi, K. Nakamura, J. Jablonski, M. Watanabe: Electrochem. Soc. Symp. Proc. 13, 188 (1998)

    Google Scholar 

  51. J. Ryuta, E. Morita, T. Tanaka, Y. Shimanuki: Jpn. Appl. Phys. 29, L1947 (1990)

    CAS  Google Scholar 

  52. H. Yamagishi, I. Fusegawa, N. Fujimaki, M. Katayama: Semicond. Sci. Techn. 7, A135 (1992)

    CAS  Google Scholar 

  53. P.J. Roksnoer, M.M.B. Van de Boom: J. Cryst. Growth 53, 563 (1981)

    CAS  Google Scholar 

  54. H. Bender, J. Vanhellemont, R. Schmolke: Jpn. J. Appl. Phys. 36, L1217 (1997)

    Google Scholar 

  55. R. Schmolke, W. Angelberger, W. v. Ammon, H. Bender: Solid State Phenom. 82–84, 231 (2002)

    Google Scholar 

  56. K. Nakai, M. Hasebe, K. Ohta, W. Ohashi: J. Cryst. Growth 210, 20 (2000)

    CAS  Google Scholar 

  57. H. Föll, B.O. Kolbesen: Appl. Phys. 8, 319 (1975)

    Google Scholar 

  58. P.M. Petroff, A.J.R. de Kock: J. Cryst. Growth 36, 1822 (1976)

    Google Scholar 

  59. J. Chikawa, T. Abe, H. Harada: Impurity effect on the formation of microdefects during silicon crystal growth. In: Semiconductor Silicon, ed. by H.R. Huff, T. Abe, B. Kolbesen (The Electrochemical Society, Pennington 1986) p. 61

    Google Scholar 

  60. H. Föll, U. Gösele, B.O. Kolbesen: J. Cryst. Growth 40, 90 (1977)

    Google Scholar 

  61. R. Schmolke, M. Blietz, R. Schauer, D. Zemke, H. Oelkrug, W.V. Ammon, U. Lambert, D. Gräf: In: Advanced Silicon Wafers for 0.18 μmDesign Rule and Beyond: Epi and fLASH!, High Purity Silicon VI, Phoenix 2000, ed. by C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H.J. Dawson (The Electrochemical Society, Pennington 2000)

    Google Scholar 

  62. W. v. Ammon, E. Dornberger, P.O. Hansson: J. Cryst. Growth 198/199, 390 (1999)

    Google Scholar 

  63. V.V. Voronkov: J. Cryst. Growth 59, 625 (1982)

    CAS  Google Scholar 

  64. E. Dornberger, J. Esfandyari, D. Gräf, J. Vanhellemont, U. Lambert, F. Dupret, W. v. Ammon: In: Simulation of Grown-in Voids in Czochralski Silicon Crystals, Crystalline Defects and Contamination Control: Their Impact and Control in Device Manufacturing II, Nürnberg 1997, ed. by B.O. Kolbesen, P. Stallhofer, C. Claeys, F. Tardiff (The Electrochemical Society, Pennington 1997)

    Google Scholar 

  65. M. Hasebe, Y. Takeoka, S. Shinoyama, S. Naito: Ring-like distributed stacking faults in CZ-Si wafers. In: Defect Control in Semiconductors, ed. by K. Sumino (Elsevier, Amsterdam 1990) p. 157

    Google Scholar 

  66. H. Yamagishi, I. Fusegawa, K. Takano, E. Iino, N. Fujimaki, T. Ohta, M. Sakurada: In: Evaluation of FDPs and COPs in Silicon Single-Crystals, Semiconductor Silicon, San Francisco 1994, ed. by H.R. Huff, W. Bergholz, K. Sumino (The Electrochemical Society, Pennington 1994)

    Google Scholar 

  67. W. v. Ammon, E. Dornberger: In: Properties of Crystalline Silicon, EMIS Datareviews, Vol. 20, ed. by R. Hull (INSPEC, London 1999)

    Google Scholar 

  68. V.V. Voronkov, R. Falster: J. Cryst. Growth 194, 76 (1998)

    CAS  Google Scholar 

  69. E. Dornberger, D. Gräf, M. Suhren, U. Lambert, P. Wagner, F. Dupret, W. v. Ammon: J. Cryst. Growth 180, 343 (1997)

    CAS  Google Scholar 

  70. E. Dornberger, J. Esfandyari, J. Vanhellemont, D. Gräf, U. Lambert, F. Dupret, W. v. Ammon: In: Simulation of Non-Uniform Grown-in Void Distributions in Czochralski Crystal Growth, Semiconductor Silicon, San Francisco 1998, ed. by H.R. Huff, U. Gösele, H. Tsuya (The Electrochemical Society, Pennington 1998)

    Google Scholar 

  71. M. Hourai, T. Nagashima, E. Kajita, S. Miki: In: Oxygen Precipation Behavior in Silicon During Czochralski Crystal Growth, Semiconductor Silicon, San Francisco 1994, ed. by H.R. Huff, W. Bergholz, K. Sumino (The Electrochemical Society, Pennington 1994) p. 156

    Google Scholar 

  72. T. Iwasaki, A. Tomiura, K. Nakai, H. Haga, K. Kojima, T. Nakashizu: In: Influence of Cooling Condition During Crystal Growth of CZ-Si on Oxide Breakdown Property, Semiconductor Silicon, San Francisco 1994, ed. by H.R. Huff, W. Bergholz, K. Sumino (The Electrochemical Society, Pennington 1994) p. 744

    Google Scholar 

  73. K. Takano, K. Kitagawa, E. Iino, M. Kimura, H. Yamagishi: Mater. Sci. Forum 196–201, 1707 (1995)

    Google Scholar 

  74. M. Akatsuka, M. Okui, S. Umeno, K. Sueoka: J. Electrochem. Soc. 150(9), G587 (2003)

    CAS  Google Scholar 

  75. J. Furukawa, H. Tanaka, Y. Nakada, N. Ono, H. Shiraki: J. Cryst. Growth 210, 26 (2000)

    CAS  Google Scholar 

  76. V.V. Voronkov, R. Falster: J. Appl. Phys. 86(11), 5975 (1999)

    CAS  Google Scholar 

  77. A. Natsume, N. Inoue, K. Tanahashi, A. Mori: J. Cryst. Growth 225, 221 (2001)

    CAS  Google Scholar 

  78. T. Sinno, E. Dornberger, W. v. Ammon, R.A. Brown, F. Dupret: Mater. Sci. Eng. 28, 149 (2000)

    Google Scholar 

  79. Z. Wang, R. Brown: J.Crystal Growth 231, 442 (2001)

    CAS  Google Scholar 

  80. A. Sattler, W. von Ammon, M. Weber, W. Haeckl, H. Schmidt: Semiconductor Wafers of Silicon and Method for Their Production, US Patent Application 8043427B2 (2007)

    Google Scholar 

  81. K. Tanahashi, N. Inoue: J. Mat. Sci. Mater. Electron. 10, 359 (1999)

    CAS  Google Scholar 

  82. J. Vanhellemont, E. Kamiyama, K. Sueoka: ECS Solid State Lett. 3(5), X3–X4 (2014)

    CAS  Google Scholar 

  83. K. Sueoka, E. Kamiyama, J. Vanhellemont, K. Nakamura: Phys. Stat. sol. B 251(11), 2159 (2014)

    CAS  Google Scholar 

  84. E. Dornberger, W. v. Ammon, D. Gräf, U. Lambert, A. Miller, H. Oelkrug, A. Ehlert: The impact of dwell time above 900 C during crystal growth on the gate oxide integrity of silicon wafers, Proc. 4th Int. Symp.High Purity Silicon, San Antonio, ed. by C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H.J. Dawson (1996) p. 140

    Google Scholar 

  85. J. Esfandyari, G. Hobler, S. Senkader, H. Pötzl, B. Murphy: J. Electrochem. Soc. 143, 995 (1996)

    CAS  Google Scholar 

  86. V.V. Voronkov, R. Falster: J. Cryst. Growth 198/199, 399 (1999)

    CAS  Google Scholar 

  87. V.V. Voronkov, R. Falster: J. Appl. Phys. 87(9), 4126 (2000)

    CAS  Google Scholar 

  88. T.A. Frewen, S.S. Kapur, W. Haeckl, W. v. Ammon, T. Sinno: J. Cryst. Growth 279, 258 (2005)

    CAS  Google Scholar 

  89. N.I. Puzanov, A.M. Eidenzon: Semicond. Sci. Technol. 7, 406 (1992)

    CAS  Google Scholar 

  90. K. Nakamura, T. Saishoji, J. Tomioka: J. Cryst. Growth 237–239, 1678 (2002)

    Google Scholar 

  91. V.V. Voronkov: Mater. Sci. Eng. B73, 69 (2000)

    CAS  Google Scholar 

  92. V.V. Voronkov, R. Falster: J. Cryst. Growth 226, 192 (2001)

    CAS  Google Scholar 

  93. T. Abe, M. Kimura: In: Semiconductor Silicon, 1990, ed. by H.R. Huff, K. Barraclough, J. Chikawa (The Electrochemical Society, Pennington 1990)

    Google Scholar 

  94. W. v. Ammon, P. Dreier: Silicon bulk technology for power devices, Proc. Int. Symp. Power Semicond. Devices, Tokyo (1988) p. 134

    Google Scholar 

  95. D.-R. Yang, Y.-W. Wang, H.-N. Yao, D.-L. Que: Prog. Nat. Sci. 3(2), 176 (1993)

    CAS  Google Scholar 

  96. W. v. Ammon, R. Hoelzl, T. Wetzel, D. Zemke, G. Raming, M. Blietz: Microelectron. Eng. 66, 234 (2003)

    CAS  Google Scholar 

  97. W.V. Ammon, A. Ehlert, U. Lambert, D. Gräf, M. Brohl, P. Wagner: In: Gate Oxide Related Bulk Properties of Oxygen Doped Floating Zone and Czochralski Silicon, Semiconductor Silicon, San Francisco 1994, ed. by H.R. Huff, W. Bergholz, K. Sumino (The Electrochemical Society, Pennington 1994)

    Google Scholar 

  98. K. Nakai, Y. Inoue, H. Yokota, A. Ikari, J. Takahashi, A. Tachikawa, K. Kitahara, Y. Ohta, W. Ohashi: J. Appl. Phys. 85(8), 4301 (2001)

    Google Scholar 

  99. J. Takahashi, K. Nakai, K. Kawakami, Y. Inoue, H. Yokota, A. Tachikawa, A. Ikari, W. Ohashi: Jpn. J. Appl. Phys. 42, 363 (2003)

    CAS  Google Scholar 

  100. F. Shimura, R.S. Hockett: Appl. Phys. Lett. 48, 224 (1986)

    CAS  Google Scholar 

  101. Q. Sun, K.H. Yao, H.C. Gatos, J. Lagowski: J. Appl. Phys. 71(8), 3760 (1992)

    CAS  Google Scholar 

  102. K. Aihara, H. Takeno, Y. Hayamizu, M. Tamatsuka, T. Masui: J. Appl. Phys. 88(6), 3705 (2000)

    CAS  Google Scholar 

  103. K. Nakai, Y. Inoue, H. Yokota, A. Ikari, J. Takahashi, W. Ohashi: Formation of grown-in defects in nitrogen doped CZ-Si crystals, Proc 3rd Int. Symp.Adv. Sci. Technol. Silicon Materials, Kona, ed. by M. Umeno (2000) p. 88

    Google Scholar 

  104. D. Gräf, U. Lambert, R. Schmolke, R. Wahlich, W. Siebert, E. Daub, W. v. Ammon: 300 mm Epi pp-wafer: Is there sufficient gettering?, Proc. 6th Int. Symp.High Purity Silicon, Seattle, ed. by C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H.J. Dawson (2000) p. 319

    Google Scholar 

  105. H.J. Stein: Nitrogen in crystalline silicon, Proc. Int. Symp.Oxyg. Carbon, Hydrog.NitrogenCryst. Silicon, Boston, ed. by J.C. Mikkelsen Jr., S.J. Pearton, J.W. Corbett, S.J. Pennycook (1986) p. 523

    Google Scholar 

  106. Y. Itoh, T. Abe: Appl. Phys. Lett. 53(1), 39 (1988)

    CAS  Google Scholar 

  107. A. Hara, A. Ohsawa: Interaction of oxygen and other point defects in silicon crystals, Proc. Int. Symp.Adv. Sci. Technol. Silicon Materials, Kona, ed. by K. Kohra (1991) p. 47

    Google Scholar 

  108. H. Sawada, K. Kawakami: Phys. Rev. B 62(3), 1851 (2000)

    CAS  Google Scholar 

  109. H. Kageshima, A. Taguchi, K. Wada: Appl. Phys. Lett. 76(25), 3718 (2000)

    CAS  Google Scholar 

  110. R. Jones, S. Öberg, F.B. Rasmussen, B.B. Nielson: Phys. Rev. Lett. 72, 1882 (1994)

    CAS  Google Scholar 

  111. K.L. Brower: Phys. Rev. B 26, 6040 (1982)

    CAS  Google Scholar 

  112. H.J. Stein: Appl. Phys. Lett. 47(12), 1339 (1985)

    CAS  Google Scholar 

  113. K. Murakami, H. Itoh, K. Takita, K. Masuda: Appl. Phys. Lett. 45(2), 176 (1984)

    CAS  Google Scholar 

  114. W.V. Ammon, D. Gräf, W. Zulehner, R. Schmolke, E. Dornberger, U. Lambert, J. Vanhellemont, W. Hensel: In: Suppression of Point Defect Aggregation in FZ Silicon Single Crystals by Nitrogen Doping; Extendend Abstracts, Semiconductor Silicon, San Diego 1998, ed. by H.R. Huff, U. Gösele, H. Tsuya (The Electrochemical Society, Pennington 1998)

    Google Scholar 

  115. K. Nakamura, T. Saishoji, S. Togawa, J. Tomioka: The effect of nitrogen on the grown-in defect formation in CZ silicon crystals. In: Proceedings of the Kazusa Akademia Park Forum on the Science and Technology of Silicon Materials, ed. by K. Sumino (Kazusa Akademia Park, Chiba 1999) p. 116

    Google Scholar 

  116. V.V. Voronkov, R. Falster: J. Electrochem. Soc. 149(3), G167 (2002)

    CAS  Google Scholar 

  117. W.B. Knowlton, J.T. Walton, J.S. Lee, Y.K. Wong, E.E. Haller, W. v. Ammon, W. Zulehner: Mater. Sci. Forum 196–201, 1761 (1995)

    Google Scholar 

  118. T. Ono, S. Umeno, T. Tanaka, E. Asayama, M. Hourai: Behavior of defects in nitrogen doped CZ-Si crystals, Proc. Int. Symp. Forum Sci. Technol. Silicon Materials, Shonan Village Center, Kanagawa, ed. by H. Yamata-Kaneta, K. Sumino (Japan Technical Information Service, Tokyo 2001) p. 95

    Google Scholar 

  119. K. Nakamura, T. Saishoji, S. Togawa, J. Tomioka: Influence of nitrogen on the pont defect reaction in silicon, Proc. Int. Symp. Forum Sci. Technol. Silicon Materials, Shonan Village Cent., ed. by H. Yamata-Kaneta, K. Sumino (Japan Technical Information Service, Tokyo 2001) p. 109

    Google Scholar 

  120. W. v. Ammon, R. Hölzl, J. Virbulis, E. Dornberger, R. Schmolke, D. Gräf: J. Cryst. Growth 226(1), 19 (2001)

    Google Scholar 

  121. P. Wagner, R. Oeder, W. Zulehner: Appl. Phys. A 46, 73 (1988)

    Google Scholar 

  122. W. v. Ammon, P. Dreier, W. Hensel, U. Lambert, L. Köster: Mater. Sci. Eng. B36, 33 (1996)

    Google Scholar 

  123. M.W. Qi, S.S. Tan, B. Zhu, P.X. Cai, W.F. Gu, M. Xu, T.S. Shi, D.L. Que, L.B. Li: J. Appl. Phys. 69, 3775 (1991)

    CAS  Google Scholar 

  124. A. Gali, J. Miro, P. Deak, C. Ewels, R. Jones: J. Phys. Condens. Mat. 8, 7711 (1996)

    CAS  Google Scholar 

  125. X. Yue, J. Chen, X. Ma, D. Yang: Mater. Sci. Eng. R74, 1 (2013)

    Google Scholar 

  126. H.Ch. Alt, H.E. Wagner: J.Appl.Phys. 106, 103511 (2009)

    Google Scholar 

  127. M. Suhren, D. Gräf, U. Lambert, P. Wagner: Crystal defects in highly boron doped silicon, Proc. 4th Int. Symp.High Purity Silicon, San Antonio, ed. by C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H.J. Dawson (The Electrochemical Society, Pennington 1996) p. 132

    Google Scholar 

  128. K. Nakamura, R. Suewaka, T. Saishoji, J. Tomioka: The effect of impurities on the grown-in defects in CZ-Si crystals (B, C, N, O, Sb, As, P), Proc. Forum Sci. Technol. Silicon Mater., ed. by H. Yamad-Kaneta, K. Sumino (2003) p. 161

    Google Scholar 

  129. W. v. Ammon: Crystal growth of large diameter CZ Si crystals, Proc 2nd Int. Symp.Adv. Sci. Technol. Silicon Materials, Kona, ed. by M. Umeno (1996) p. 233

    Google Scholar 

  130. J. Vanhellemont, E. Kamiyama, K. Sueoka: ECS J. Solid State Sci. Technol. 2, 166 (2013)

    Google Scholar 

  131. T. Sinno, H. Susanto, R. Brown, W. v. Ammon, E. Dornberger: Appl. Phys. Lett. 75, 1544 (1999)

    CAS  Google Scholar 

  132. S. Ma, S. Wang: Phys.Rev. B 81, 193203 (2010)

    Google Scholar 

  133. T. Abe, T. Masui, H. Harada, J. Chikawa: In: VLSI Science and Technology, 1985, ed. by W.M. Bullis, S. Broyda (The Electrochemical Society, Pennington 1985)

    Google Scholar 

  134. R. Takeda, T. Minami, H. Saito, Y. Hirano, H. Fujimori, K. Kashima, Y. Matsushita: Influence of LSTD size on the formation of denuded zone in hydrogen-annealed CZ silicon wafers, Proc. 6th Int. Symp.High Purity Silicon, Phoenix, ed. by C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H.J. Dawson (The Electrochemical Society, Pennington 2000) p. 331

    Google Scholar 

  135. M. Porrini, V.V. Voronkov, R. Falster: Mater. Sci. Eng. B 134, 185 (2006)

    CAS  Google Scholar 

  136. S. Kishino, M. Kanamori, N. Yoshihizo, M. Tajima, T. Iizuka: J. Appl. Phys. 50, 8240 (1978)

    Google Scholar 

  137. T. Fukuda: Appl. Phys. Lett. 65(11), 1376 (1994)

    CAS  Google Scholar 

  138. F. Shimura: J. Appl. Phys. 59, 3251 (1986)

    CAS  Google Scholar 

  139. M. Porrini: Cryst. Res. Technol. 40(10/11), 1054 (2005)

    CAS  Google Scholar 

  140. W. Sugimura, T. Ono, S. Umeno, M. Hourai, K. Sueoka: ECS Transactions 2(2), 95 (2006)

    CAS  Google Scholar 

  141. V.V. Voronkov, R. Falster, M. Porrini, J. Duchini: Phys. Status Solidi A 209(10), 1898 (2012)

    CAS  Google Scholar 

  142. M. Porrini, J. Duchini, A. Bazzali: Crystal. Res. Technol. 49(8), 564 (2014)

    CAS  Google Scholar 

  143. T. Abe, H. Harada, J. Chikawa: Mat. Res. Soc. Symp. Proc. 14, 1 (1983)

    CAS  Google Scholar 

  144. V.V. Voronkov, R. Falster: J. Electrochem. Soc. 149, G167 (2002)

    CAS  Google Scholar 

  145. G. Borionetti, D. Gambaro, M. Porrini, V.V. Voronkov: Grown-in microdefect distribution in doped silicon crystals. In: Semiconductor Silicon 2002–2, ed. by H.R. Huff, L. Fabry, S. Kishino (Electrochemical Society, Pennington 2002) p. 505

    Google Scholar 

  146. K. Sueoka, M. Akatsuka, K. Nishihara, T. Yamamoto, S. Kobayashi: Mater. Sci. Forum 196–201, 1737 (1995)

    Google Scholar 

  147. J. Vanhellemont, C. Claeys: J. Appl. Phys. 62(9), 3960 (1987)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried von Ammon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

von Ammon, W., Sattler, A., Kissinger, G. (2017). Defects in Monocrystalline Silicon. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_5

Download citation

Publish with us

Policies and ethics