Skip to main content

Disordered Semiconductors on Mechanically Flexible Substrates for Large-Area Electronics

  • Chapter
  • First Online:
  • 32k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Low-temperature-thin-film semiconductors and dielectrics are critical for large-area flexible electronics, including displays, smart skins and imagers. Despite the presence of structural disorder, these materials show promising electronic transport properties that are vital for devices such as thin-film transistors (GlossaryTerm

TFT

s) and sensors. This chapter presents an overview of material and transport properties pertinent to large-area electronics on mechanically flexible substrates. We begin with a summary of process challenges for low-temperature fabrication of a-Si:H TFTs on plastic substrates, followed by a description of transport properties of amorphous semiconducting films, along with their influence on TFT characteristics. The TFTs must maintain electrical integrity under mechanical stress induced by bending of the substrates. Bending-induced changes are not limited to alteration of device dimensions and involve modulation of electronic transport of the active semiconducting layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.R. Forrest: Nature 428, 911 (2004)

    CAS  Google Scholar 

  2. S. Wagner, H. Gleskova, J. C. Sturm, Z. Suo: In: Technology and Applications of Amorphous Silicon, ed. by R.A. Street (Springer, Berlin 2000) p. 222

    Google Scholar 

  3. S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour: Appl. Phys. Lett. 79, 2996 (2001)

    CAS  Google Scholar 

  4. R.A. Street, M. Mulato, R. Lau, J. Ho, J. Graham, Z. Popovic, J. Hor: Appl. Phys. Lett. 78, 4193 (2001)

    CAS  Google Scholar 

  5. P. Servati, Y. Vygranenko, A. Nathan, S. Morrison, A. Madan: J. Appl. Phys. 96, 7575 (2004)

    Google Scholar 

  6. S. Soltanian, A. Servati, R. Rahmanian, F. Ko, P. Servati: J. Mater. Res. 30, 121 (2015)

    CAS  Google Scholar 

  7. L. Collins: IEE Rev. 49(3), 42 (2003)

    Google Scholar 

  8. A.B. Chwang, M.A. Rothman, S.Y. Mao, R.H. Hewitt, M.S. Weaver, J.A. Silvernail, K. Rajan, M. Hack, J.J. Brown, X. Chu, L. Moro, T. Krajewsky, N. Rutherford: Appl. Phys. Lett. 83(3), 413 (2003)

    CAS  Google Scholar 

  9. A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, D. Striakhilev: IEEE J. Solid-State Circuits 39(9), 1477 (2004)

    Google Scholar 

  10. J.K. Jeong: J. Mater. Res. 28(16), 2071 (2013)

    CAS  Google Scholar 

  11. H.Y. Jung, Y. Kang, A.Y. Hwang, C.K. Lee, S. Han, D.-H. Kim, J.-U. Bae, W.-S. Shin, J.K. Jeong: Sci. Rep. 4, 3765 (2014)

    Google Scholar 

  12. A. Nathan, S. Lee, S. Jeon, J. Robertson: J. Disp. Technol. 10(11), 917 (2014)

    CAS  Google Scholar 

  13. M.J. Powell, C. van Berkel, A.R. Franklin, S.C. Deane, W.I. Milne: Phys. Rev. B 45(8), 4160 (1992)

    CAS  Google Scholar 

  14. D. Knipp, R.A. Street, A. Volkel, J. Ho: J. Appl. Phys. 93, 347 (2003)

    CAS  Google Scholar 

  15. S. Alexander, P. Servati, G.R. Chaji, S. Ashtiani, R. Huang, D. Striakhilev, K. Sakariya, A. Kumar, A. Nathan, C. Church, J. Wzorek, P. Arsenault: J. Soc. Info. Disp. 13(7), 587 (2005)

    Google Scholar 

  16. G.L. Graff, R.E. Williford, P.E. Burrows: J. Appl. Phys. 96(4), 1840 (2004)

    CAS  Google Scholar 

  17. J.A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija: IEEE Electron Device Lett. 21(3), 100 (2000)

    CAS  Google Scholar 

  18. C.-S. Yang, L.L. Smith, C.B. Arthur, G.N. Parsons: J. Vac. Sci. Technol. B 18(2), 683 (2000)

    CAS  Google Scholar 

  19. H. Gleskova, S. Wagner, V. Gašparík, P. Kováč: Appl. Surf. Sci. 175/176, 12 (2001)

    Google Scholar 

  20. D. Stryahilev, A. Sazonov, A. Nathan: J. Vac. Sci. Technol. A 20(3), 1087 (2002)

    CAS  Google Scholar 

  21. M. Meitine, A. Sazonov: Mater. Res. Soc. Symp. Proc. 769, H6.6.1 (2003)

    Google Scholar 

  22. W.A. MacDonald: J. Mater. Chem. 14, 4 (2004)

    CAS  Google Scholar 

  23. K.L. Chopra: Thin Film Phenomena (McGraw–Hill, Toronto 1969)

    Google Scholar 

  24. E.Y. Ma, S. Wagner: Appl. Phys. Lett. 74, 2661 (1999)

    CAS  Google Scholar 

  25. A. Madan, P.G. Le Comber, W.E. Spear: J. Non-Cryst. Solids 20, 239 (1976)

    CAS  Google Scholar 

  26. N.F. Mott, E.A. Davis: Electronic Processes in Non-Crystalline Materials (Oxford Univ. Press, Oxford 1971)

    Google Scholar 

  27. C. Popescu, T. Stoica: In: Thin Film Resistive Sensors, ed. by P. Ciureanu, S. Middelhoek (IOPP, New York 1992) p. 37

    Google Scholar 

  28. P.W. Anderson: Phys. Rev. 109(5), 1492 (1958)

    CAS  Google Scholar 

  29. M.H. Cohen, H. Fritzsche, S.R. Ovshinsky: Phys. Rev. Lett. 22(20), 1066 (1969)

    Google Scholar 

  30. D. Monroe: Phys. Rev. Lett. 54(2), 146 (1985)

    CAS  Google Scholar 

  31. R.A. Street: Hydrogenated Amorphous Silicon (Cambridge Univ. Press, New York 1992)

    Google Scholar 

  32. P. Servati, A. Nathan, G.A.J. Amaratunga: Phys. Rev. B 74, 245210 (2006)

    Google Scholar 

  33. W.E. Spear, P.G. Le Comber: J. Non-Cryst. Solids 8–10, 727 (1972)

    Google Scholar 

  34. M.J. Powell: Philos. Mag. B 43(1), 93 (1981)

    CAS  Google Scholar 

  35. C.-Y. Huang, S. Guha, S.J. Hudgens: Phys. Rev. B 27(12), 7460 (1983)

    CAS  Google Scholar 

  36. J.D. Cohen, D.V. Lang, J.P. Harbison: Phys. Rev. Lett. 45(3), 197 (1980)

    CAS  Google Scholar 

  37. M. Hirose, T. Suzuki, G.H. Döhler: Appl. Phys. Lett. 34(3), 234 (1979)

    CAS  Google Scholar 

  38. P. Viktorovitch, G. Moddel: J. Appl. Phys. 51(9), 4847 (1980)

    CAS  Google Scholar 

  39. M. Shur, M. Hack: J. Appl. Phys. 55(10), 3831 (1984)

    CAS  Google Scholar 

  40. J.G. Shaw, M. Hack: J. Appl. Phys. 64(9), 4562 (1988)

    CAS  Google Scholar 

  41. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw: Phys. Rev. Lett. 91(21), 216 (2003)

    Google Scholar 

  42. T. Tiedje, A. Rose: Solid State Commun. 37, 49 (1980)

    Google Scholar 

  43. M.J.C.M. Vissenberg, M. Matters: Phys. Rev. B 57(20), 12964 (1998)

    CAS  Google Scholar 

  44. A. Salleo, T.W. Chen, A.R. Völkel, Y. Wu, P. Liu, B.S. Ong, R.A. Street: Phys. Rev. B 70, 115 (2004)

    Google Scholar 

  45. B.S. Ong, Y. Wu, P. Liu, S. Gardner: J. Am. Chem. Soc. 126, 3378 (2004)

    CAS  Google Scholar 

  46. A.J. Campbell, M.S. Weaver, D.G. Lidzey, D.D.C. Bradley: J. Appl. Phys. 84(12), 6737 (1998)

    CAS  Google Scholar 

  47. D. Natali, M. Sampietro: J. Appl. Phys. 92(9), 5310 (2002)

    CAS  Google Scholar 

  48. P. Servati, D. Striakhilev, A. Nathan: IEEE Trans. Electron Devices 50(11), 2227 (2003)

    CAS  Google Scholar 

  49. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw: Org. Electron. 4, 33 (2003)

    CAS  Google Scholar 

  50. F.R. Shapiro, D. Adler: J. Non-Cryst. Solids 74(2/3), 189 (1985)

    CAS  Google Scholar 

  51. S.D. Baranovskii, T. Faber, F. Hensel, P. Thomas: J. Phys.: Condens. Matter 9, 2699 (1997)

    CAS  Google Scholar 

  52. S. Lee, A. Nathan, Y. Ye, Y. Guo, J. Robertson: Sci. Rep. 5, 13467 (2015)

    CAS  Google Scholar 

  53. S. Lee, A. Nathan: Appl. Phys. Lett. 101, 11 (2012)

    Google Scholar 

  54. K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U.-I. Chung, J.-H. Lee: Appl. Phys. Lett. 97, 143510 (2010)

    Google Scholar 

  55. S. Jeon, S.-E. Ahn, I. Song, C.J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim: Nat. Mater. 11, 301 (2012)

    CAS  Google Scholar 

  56. S. Lee, S. Jeon, R. Chaji, A. Nathan: Proc. IEEE 103, 644 (2015)

    Google Scholar 

  57. S. Lee, K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Jeon, C. Kim, I.-H. Song, U.-I. Chung: Appl. Phys. Lett. 98, 20 (2011)

    Google Scholar 

  58. S. Lee, S. Jeon, A. Nathan: J. Disp. Technol. 9, 883 (2013)

    CAS  Google Scholar 

  59. S. Lee, A. Nathan, J. Robertson, K. Ghaffarzadeh, M. Pepper, S. Jeon, C. Kim, I.-H. Song, U.-I. Chung, K. Kim: Temperature dependent electron transport in amorphous oxide semiconductor thin film transistors, Technical Digest, IEEE Int. Electron Device Meet. (IEDM) 2011 (2011), 14.6.1

    Google Scholar 

  60. A. Nathan, H. Baltes: Microtransducer CAD (Springer, Wien 1999)

    Google Scholar 

  61. C. Herring, E. Vogt: Phys. Rev. 101(3), 944 (1956)

    CAS  Google Scholar 

  62. V.A. Gridchin, V.M. Lubimsky, M.P. Sarina: Sens. Actuators A 49(1/2), 67 (1995)

    CAS  Google Scholar 

  63. A. Dévényi, A. Belu, G. Korony: J. Non-Cryst. Solids 4, 380 (1970)

    Google Scholar 

  64. W.E. Spear, M. Heintze: Philos. Mag. B 54(5), 343 (1986)

    CAS  Google Scholar 

  65. B. Welber, M.H. Brodsky: Phys. Rev. B 16(8), 3660 (1977)

    CAS  Google Scholar 

  66. B.A. Weinstein: Phys. Rev. B 23(2), 787 (1981)

    CAS  Google Scholar 

  67. R. Zallen, W. Paul: Phys. Rev. 155(3), 703 (1967)

    CAS  Google Scholar 

  68. D. Lazarus: Phys. Rev. B 24(4), 2282 (1981)

    CAS  Google Scholar 

  69. G. Arlt: J. Appl. Phys. 49(7), 4273 (1978)

    Google Scholar 

  70. O. Dössel: Sens. Actuators 6(3), 169 (1984)

    Google Scholar 

  71. K. Rajanna, S. Mohan: Phys. Status Solidi (a) 105(2), K181 (1988)

    Google Scholar 

  72. W. Germer: Sens. Actuators 7(2), 135 (1985)

    CAS  Google Scholar 

  73. H. Gleskova, S. Wagner, W. Soboyejo, Z. Suo: J. Appl. Phys. 92(10), 6224 (2002)

    CAS  Google Scholar 

  74. P. Servati, A. Nathan: Appl. Phys. Lett. 86(7), 033504 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Servati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Servati, P., Nathan, A. (2017). Disordered Semiconductors on Mechanically Flexible Substrates for Large-Area Electronics. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_44

Download citation

Publish with us

Policies and ethics