Skip to main content

Nano-Engineered Tunable Photonic Crystals

  • Chapter
  • First Online:
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Photonic crystals offer a well-recognized ability to control the propagation of modes of light in an analogous fashion to the way in which nanostructures have been harnessed to control electron-based phenomena. This has led to proposals and indeed demonstrations of a wide variety of photonic-crystal-based photonic devices with applications in areas including communications, computing and sensing, for example. In such applications, photonic crystals can offer both a unique performance advantage, as well as the potential for substantial miniaturization of photonic systems. However, as this review outlines, two-dimensional (2-D) and three-dimensional (3-D) structures for the spectral region covering frequencies from the ultraviolet (UV) to the near-infrared (GlossaryTerm

near-IR

) (≈ 2 μm) are challenging to fabricate with appropriate precision, and in a cost-effective and also flexible way, using traditional methods. Naturally, a key concern is how amenable a given approach is to the intentional incorporation of selected defects into a particular structure. Beyond passive structures, attention turns to so-called active photonic crystals, in which the response of the photonic crystal to light can be externally changed or tuned. This capability has widespread potential in planar lightwave circuits for telecommunications, where it offers mechanisms for selective switching, for example. This review discusses alternative proposals for tuning of such photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.F. Krauss, R.M. de la Rue: Photonic crystals in the optical regime – Past, present, and future, Prog. Quantum Electron. 23, 51 (1999)

    CAS  Google Scholar 

  2. V. Berger: From photonic band gaps to refractive index engineering, Opt. Mater. 11, 131 (1999)

    CAS  Google Scholar 

  3. D.J. Norris, Y.A. Vlasov: Chemical approaches to three-dimensional semiconductor photonic crystals, Adv. Mater. 13(6), 371 (2001)

    CAS  Google Scholar 

  4. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa: Tailoring and characterization of photonic crystals, J. Photochem. Photobiol. C 2, 35 (2001)

    CAS  Google Scholar 

  5. Photonics Nanostruct. 1(1), 1 (2003): whole edition is dedicated to fundamentals and applications of photonic crystals

    Google Scholar 

  6. S.G. Johnson, J.D. Joannopoulos: Photonic Crystals: Road from Theory to Practice (Kluwer, Boston 2002)

    Google Scholar 

  7. J.D. Joannopoulos, R.D. Meade, J.N. Winn: PCs: Moulding the Flow of Light (Princeton Univ. Press, Princeton 1995)

    Google Scholar 

  8. S. John: Strong localization in certain disordered dielectric super-lattices, Phys. Rev. Lett. 58(23), 2486 (1987)

    CAS  Google Scholar 

  9. E. Yablonovitch: Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58(20), 2059 (1987)

    CAS  Google Scholar 

  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kwakami: Superprism phenomena in photonic crystals, Phys. Rev. B 58(16), R10096 (1998)

    CAS  Google Scholar 

  11. V. Berger: Photonic crystals and photonic structures, Cur. Opin. Solid State Mater. Sci. 4, 209 (1999)

    CAS  Google Scholar 

  12. K.M. Ho, C.T. Chan, C.M. Soukoulis: Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65(25), 3152 (1990)

    CAS  Google Scholar 

  13. S. Satpathy, Z. Zhang, M.R. Salehpour: Theory of photon bands in three-dimensional periodic dielectric structures, Phys. Rev. Lett. 64(11), 1239 (1990)

    CAS  Google Scholar 

  14. E. Yablonovitch: Photonic band-gap structures, J. Opt. Soc. Am. B 10(2), 283 (1993)

    CAS  Google Scholar 

  15. Y. Xia: Photonic Crystals, Adv. Mater. 13(6), 369 (2001)

    CAS  Google Scholar 

  16. C. Anderson, K. Giapis: Larger two-dimensional photonic band gaps, Phys. Rev. Lett. 77, 2949 (1996)

    CAS  Google Scholar 

  17. R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos: Nature of the photonic band gap: Some insights from a field analysis, J. Opt. Soc. Am. B 10(2), 328 (1993)

    CAS  Google Scholar 

  18. R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand: Accurate theoretical analysis of photonic band-gap materials, Phys. Rev. B 48(11), 8434 (1993)

    CAS  Google Scholar 

  19. T. Xu, S. Yang, S.V. Nair, H.E. Ruda: Confined modes in finite-size photonic crystals, Phys. Rev. B 72(11), 045126 (2005)

    Google Scholar 

  20. T. Xu, S. Yang, S.V. Nair, H.E. Ruda: Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations, Phys. Rev. B 75(12), 125104 (2007)

    Google Scholar 

  21. T. Xu, M.S. Wheeler, H.E. Ruda, M. Mojahedi, S. Aitchison: The influence of material absorption on the quality factor of photonic crystal cavities, Opt. Express 17(10), 8343 (2009)

    CAS  Google Scholar 

  22. T. Xu, M.S. Wheeler, S.V. Nair, H.E. Ruda, M. Mojahedi, S. Aitchison: Highly confined mode above the light line in a two-dimensional photonic crystal slab, Appl. Phys. Lett. 93(24), 241105 (2008)

    Google Scholar 

  23. C. Lopez: Materials aspects of PCs, Adv. Mater. 15(20), 1679 (2003)

    CAS  Google Scholar 

  24. C. Weisbuch, C.H. Benisty, S. Olivier, M. Rattier, C.J.M. Smith, T.F. Krauss: Advances in photonic crystals, Phys. Status Solidi 221(93), 93 (2000)

    CAS  Google Scholar 

  25. C. Weisbuch, H. Benisty, M. Rattier, C.J.M. Smith, T.F. Krauss: Advances in 2D semiconductor PCs, Synth. Mater. 116, 449 (2001)

    CAS  Google Scholar 

  26. S.L. Swartz: Topics in electronic ceramics, IEEE Trans. Electr. Insul. 25(5), 935 (1990)

    CAS  Google Scholar 

  27. F. Watt: Focused high energy proton beam micromachining: A perspective view, Nucl. Instrum. Methods Phys. Res. 158, 165 (1999)

    CAS  Google Scholar 

  28. D.K. Ferry, R.O. Grondin: Physics of Submicron Devices (Plenum, New York 1991)

    Google Scholar 

  29. J. Gierak, D. Mailly, G. Faini, J.L. Pelouard, P. Denk, F. Pardo, J.Y. Marzin, A. Septier, G. Schmmid, J. Ferre, R. Hydman, C. Chappert, J. Flicstein, B. Gayral, J.M. Gerard: Nano-fabrication with focused ion beams, Microelectron. Eng. 57/58, 865 (2001)

    Google Scholar 

  30. K. Gamo: Nanofabrication by FIB, Microelectron. Eng. 32, 159 (1996)

    CAS  Google Scholar 

  31. J. Melngailis, A.A. Mondelli, I.L. Berry III, R. Mohondro: A review of ion projection lithography, J. Vac. Sci. Technol. B 16(3), 927 (1998)

    Google Scholar 

  32. P. Peercy: The drive to miniaturization, Nature 406, 1023 (2000)

    CAS  Google Scholar 

  33. T. Ito, S. Okazaki: Pushing the limits of lithography, Nature 406, 1027 (2000)

    CAS  Google Scholar 

  34. N. Peng, C. Jeynes, R.P. Webb, I.R. Chakarov, M.G. Blamire: Monte Carlo simulations of masked ion beam irradiation damage profiles in YBa2Cu3O7−δ thin films, Nucl. Instrum. Methods Phys. Res. B 178, 242 (2001)

    CAS  Google Scholar 

  35. J.L. Bartelt: Masked ion beam lithography: An emerging technology, Solid State Technol. 29(5), 215 (1986)

    CAS  Google Scholar 

  36. D.P. Stumbo, J.C. Wolfe: Contrast of ion beam proximity printing with non-ideal masks, J. Vac. Sci. Technol. B 12(6), 3539 (1994)

    CAS  Google Scholar 

  37. T. Devolder, C. Chappert, Y. Chen, E. Cambril, H. Launois, H. Bernas, J. Ferre, J.P. Jamet: Patterning of planar magnetic nanostructures by ion irradiation, J. Vac. Sci. Technol. B 17(6), 3177 (1999)

    CAS  Google Scholar 

  38. P. Ruchhoeft, J.C. Wolfe, R. Bass: Ion beam aperture-array lithography, J. Vac. Sci. Technol. B 19(6), 2529 (2001)

    CAS  Google Scholar 

  39. Y. Hsieh, Y. Hwang, J. Fu, Y. Tsou, Y. Peng, L. Chen: Dislocation multiplication inside contact holes, Microelectron. Reliab. 39, 15 (1999)

    Google Scholar 

  40. A.N. Broers, A.C.F. Hoole, J.M. Ryan: Electron beam lithography – Resolution limits, Microelectron. Eng. 32, 131 (1996)

    CAS  Google Scholar 

  41. J. Gierak, A. Septier, C. Vieu: Design and realization of a very high-resolution FIB nanofabrication instrument, Nucl. Instrum. Methods Phys. Res. A 427, 91 (1999)

    CAS  Google Scholar 

  42. C. Lehrer, L. Frey, S. Petersen, H. Ryssel: Limitations of focused ion beam nano-machining, J. Vac. Sci. Technol. B 19(6), 2533 (2001)

    CAS  Google Scholar 

  43. H. Masuda, K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466 (1995)

    CAS  Google Scholar 

  44. R. Tonucci, B. Justus, A. Campillo, C. Ford: Nanochannel array glass, Science 258, 783 (1992)

    CAS  Google Scholar 

  45. V. Lehmann, H. Foll: Formation mechanism and properties of electrochemically etched trenches in n-type silicon, J. Electrochem. Soc. 137(2), 653 (1990)

    CAS  Google Scholar 

  46. A. Birner, R.B. Wehrspohn, U.M. Gosele, K. Busch: Silicon-based photonic crystals, Adv. Mater. 13(6), 377 (2001)

    CAS  Google Scholar 

  47. J. Martin: Nanomaterials: A membrane-based synthetic approach, Science 266, 1961 (1994)

    CAS  Google Scholar 

  48. J.I. Martin, J. Nogues, K. Liu, J.L. Vicent, I.K. Schuller: Ordered magnetic nanostructures: Fabrication and properties, J. Magn. Mater. 256(1-3), 449 (2003)

    CAS  Google Scholar 

  49. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura: Photonic crystals using anodic porous alumina, Jpn. J. Appl. Phys. Pt. 2 38(12A), L1403 (1999)

    Google Scholar 

  50. R. Wehrspohn, J. Schilling: Electrochemically prepared pore arrays for photonic-crystal applications, MRS Bulletin 26(8), 623 (2001)

    CAS  Google Scholar 

  51. A.P. Li, F. Muller, A.B.K. Nielsch, U. Gosele: Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84(11), 6023 (1998)

    CAS  Google Scholar 

  52. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura: Square and triangular nanohole array architectures in anodic alumina, Adv. Mater. 13, 189 (2001)

    CAS  Google Scholar 

  53. M. Nakao, S. Oku, T. Tamamura, K. Yasui, H. Masuda: GaAs and InP nanohole arrays fabricated by reactive beam etching using highly ordered alumina membranes, Jpn. J. Appl. Phys. Pt. 1 38(2B), 1052 (1999)

    CAS  Google Scholar 

  54. J. Liang, H. Chik, A. Yin, J. Xu: Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template, J. Appl. Phys. 91(4), 2544 (2002)

    CAS  Google Scholar 

  55. N. Matsuura, T.W. Simpson, C.P. McNorgan, I.V. Mitchell, X. Mei, P. Morales, H.E. Ruda: Nanometer-scale pattern transfer using ion implantation. In: Three-Dimensional Nano-engineered Assemblies, MRS Proceedings, Vol. 739, ed. by T.M. Orlando, L. Merhari, D.P. Taylor, K. Ikuta (Cambridge Univ. Press, Boston 2002)

    Google Scholar 

  56. N. Matsuura, T.W. Simpson, I.V. Mitchell, X. Mei, P. Morales, H.E. Ruda: Ultra-high density, nonlithographic, sub-100 nm pattern transfer by ion implantation an selective chemical etching, Appl. Phys. Lett. 81(25), 4826 (2002)

    CAS  Google Scholar 

  57. E. Rimini: Ion Implantation: Basics to Device Fabrication (Springer, New York 1995)

    Google Scholar 

  58. G. Hobler: Monte Carlo simulation of two-dimensional implanted dopant distributions at mask edges, Nucl. Instrum. Methods Phys. Res. B 96, 155 (1995)

    CAS  Google Scholar 

  59. M.M. Faye, C. Vieu, G.B. Assayag, P. Salles, A. Claverie: Lateral damage extension during masked ion implantation into GaAs, J. Appl. Phys. 80(8), 4303 (1996)

    CAS  Google Scholar 

  60. P. Schmuki, L. Erickson: Direct micro-patterning of Si and GaAs using electrochemical development of focused ion beam implants, Appl. Phys. Lett. 73, 2600 (1998)

    CAS  Google Scholar 

  61. K. Wang, A. Chelnokov, S. Rowson, P. Garouche, J.-M. Lourtioz: Three-dimensional Yablonovite-like photonic crystals by focused ion beam etching of macroporous silicon, Mater. Res. Soc. Symp. Proc. 637, E1.4.1 2001)

    Google Scholar 

  62. S. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, J. Bur: A three-dimensional photonic crystals operating at infrared wavelengths, Nature 394, 251 (1998)

    CAS  Google Scholar 

  63. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science 289, 604 (2000)

    CAS  Google Scholar 

  64. E. Yablonovitch, T. Gmitter, K. Leung: Photonic band structure: The face-centered-cubic case employing non-spherical atoms, Phys. Rev. Lett. 67, 2295 (1991)

    CAS  Google Scholar 

  65. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. Chan, C. Soukoulis, K. Ho: Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods, Phys. Rev. B 50, 1945 (1994)

    CAS  Google Scholar 

  66. K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, M. Sigalas: Photonic band gaps in three dimensions: New layer-by-layer periodic structures, Solid State Commun. 89(5), 413 (1994)

    CAS  Google Scholar 

  67. H.S. Sözüer, J.P. Dowling: Photonic band calculations for woodpile structures, J. Mod. Opt. 41(2), 231 (1994)

    Google Scholar 

  68. Y. Xia, B. Gates, Z.-Y. Li: Self-assembly approaches to three-dimensional photonic crystals, Adv. Mater. 13(6), 409 (2001)

    CAS  Google Scholar 

  69. A. Moroz: Three-dimensional complete photonic-band-gap structures in the visible range, Phys. Rev. Lett. 83(25), 5274 (1999)

    CAS  Google Scholar 

  70. S. Kawakami: Fabrication of sub-micrometre 3D periodic structures composed of Si/SiO2, Electron. Lett. 33(4), 1260 (1997)

    CAS  Google Scholar 

  71. C.T. Chan, S. Datta, K.M. Ho, C.M. Soukoulis: A7 structure: A family of photonic crystals, Phys. Rev. B 50(3), 1988 (1994)

    CAS  Google Scholar 

  72. G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M.M. Sigalas, C.M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, W. Koenig: Fabrication of photonic crystals by deep x-ray lithography, Appl. Phys. Lett. 71(11), 1441 (1997)

    CAS  Google Scholar 

  73. C. Cheng, A. Scherer: Fabrication of photonic band-gap crystals, J. Vac. Sci. Technol. B 13(6), 2153 (1995)

    Google Scholar 

  74. A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti, V.G. Ralchenko: Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897 (1998)

    CAS  Google Scholar 

  75. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel: Large-scale synthesis of a silicon photonic crystals with a complete three-dimensional bandgap near 1.5 micrometres, Nature 405, 437 (2000)

    CAS  Google Scholar 

  76. J.E.G.J. Wijnhoven, W.L. Vos: Preparation of photonic crystals made of air spheres in titania, Science 281, 802 (1998)

    CAS  Google Scholar 

  77. Y. Xia, B. Gates, Y. Yin, Y. Lu: Mono-dispersed colloidal spheres: Old materials with new applications, Adv. Mater. 12(10), 693 (2000)

    CAS  Google Scholar 

  78. A. Stein: Sphere templating methods for periodic porous solids, Micropor. Mesopor. Mater. 44/45, 227 (2001)

    Google Scholar 

  79. J. Martorell, N.M. Lawandy: Observation of inhibited spontaneous emission in a periodic dielectric structure, Phys. Rev. Lett. 65(15), 1877 (1990)

    CAS  Google Scholar 

  80. I.I. Tarhan, G.H. Watson: Photonic band structure of FCC colloidal crystals, Phys. Rev. Lett. 76(2–8), 315 (1996)

    CAS  Google Scholar 

  81. Y.A. Vlasov, M. Deutsch, D.J. Norris: Single-domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76(12), 1627 (2000)

    CAS  Google Scholar 

  82. D.C. Reynolds, F. Lopez-Tejeira, D. Cassagne, F. Garcia-Vidal, C. Jouanin, J. Sanchez-Dehesa: Spectral properties of opal-based photonic crystals having a SiO2 matrix, Phys. Rev. B 60(16), 11422 (1999)

    CAS  Google Scholar 

  83. V.N. Bogomolov, S.V. Gaponenko, I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyavina, N.I. Silvanovich, S.M. Samoilovich: Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55(6), 7619 (1997)

    CAS  Google Scholar 

  84. S.G. Romanov, A.V. Fokin, R.M. De La Rue: Stop-band structure in complementary three-dimensional opal-based photonic crystals, J. Phys. Condens. Matter 11, 3593 (1999)

    CAS  Google Scholar 

  85. R. Biswas, M.M. Sigalas, G. Subramania, K.M. Ho: Photonic band gaps in colloidal systems, Phys. Rev. B 57(9), 3701 (1998)

    CAS  Google Scholar 

  86. A. Richel, N.P. Johnson, D.W. McComb: Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix, Appl. Phys. Lett. 76(14), 1816 (2000)

    CAS  Google Scholar 

  87. B.T. Holland, C.F. Blanford, A. Stein: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538 (1998)

    CAS  Google Scholar 

  88. M.S. Thijssen, R. Sprik, J.E.G.J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, W.L. Vos: Inhibited light propagation and broadband reflection in photonic air-sphere crystals, Phys. Rev. Lett. 83(14), 2730 (1999)

    CAS  Google Scholar 

  89. F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, C. Lopez: Synthesis of inverse opals, Colloids Surf. A 202, 281 (2002)

    CAS  Google Scholar 

  90. O.D. Velev, E.W. Kaler: Research news: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals, Adv. Mater. 12(7), 531 (2000)

    CAS  Google Scholar 

  91. O.D. Velev, A.M. Lenhoff: Colloidal crystals as templates for porous materials, Curr. Opin. Colloid Interface. Sci. 5, 56 (2000)

    CAS  Google Scholar 

  92. F. Blanford, H. Yan, R.C. Schroden, M. Al-Daous, A. Stein: Gems of chemistry and physics: Macroporous metal oxides with 3D order, Adv. Mater. 13(6), 401 (2001)

    CAS  Google Scholar 

  93. A.M. Kapitonov, N.V. Gaponenko, V.N. Bogomolov, A.V. Prokofiev, S.M. Samoilovich, S.V. Gaponenko: Photonic stop band in a three-dimensional SiO2/TiO2 lattice, Phys. Status Solidi (a) 165(1), 119 (1998)

    CAS  Google Scholar 

  94. N. Matsuura, S. Yang, P. Sun, H.E. Ruda: Development of highly-ordered, ferroelectric inverse opal films using sol-gel infiltration, Appl. Phys. A 81, 379 (2005)

    CAS  Google Scholar 

  95. S.M. Yang, H. Miguez, G.A. Ozin: Opal circuits of light – Planarized micro photonic crystals chips, Adv. Funct. Mater. 12(6/7), 425431 (2002)

    Google Scholar 

  96. A. Polman, P. Wiltzius: Materials science aspects of PCs, MRS Bulletin 26(8), 608 (2001)

    CAS  Google Scholar 

  97. V.L. Colvin: From opals to optics: Colloidal photonic crystals, MRS Bulletin 26(8), 637 (2001)

    CAS  Google Scholar 

  98. S.H. Park, D. Qin, Y. Xia: Crystallization of mesoscale particles over large areas, Adv. Mater. 10(3), 1028 (1998)

    CAS  Google Scholar 

  99. P. Jiang, J. Bertone, K. Hwang, V. Colvin: Single-crystal colloidal multi-layers of controlled thickness, Chem. Mater 11, 2132 (1999)

    CAS  Google Scholar 

  100. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris: On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289 (2001)

    CAS  Google Scholar 

  101. B. Gates, Y. Xia: Photonic crystals that can be addressed with an external magnetic field, Adv. Mater. 13(21), 1605 (2001)

    CAS  Google Scholar 

  102. I. Soten, H. Miguez, S.M. Yang, S. Petrov, N. Coombs, N. Tetreault, N. Matsuura, H.E. Ruda, G.A. Ozin: Barium titanate inverted opals – Synthesis, characterization, and optical properties, Adv. Funct. Mater. 12(1), 71 (2002)

    CAS  Google Scholar 

  103. M.C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke: Laser rapid prototyping of photonic band-gap microstructures, Science 275, 1284 (1997)

    CAS  Google Scholar 

  104. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51 (1999)

    CAS  Google Scholar 

  105. H.-B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystals structures achieved with two-photon-absorption photo-polymerization of resin, Appl. Phys. Lett. 74(6), 786 (1999)

    CAS  Google Scholar 

  106. M. Campbell, D. Sharp, M. Harrison, R. Denning, A. Turberfield: Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000)

    CAS  Google Scholar 

  107. J. Martorell, R. Vilaseca, R. Corbalan: Second harmonic generation in a photonic crystal, Appl. Phys. Lett. 70(6), 702 (1997)

    CAS  Google Scholar 

  108. H. Inouye, Y. Kanemitsu: Direct observation of non-linear effects in a one dimensional photonic crystal, Appl. Phys. Lett. 82(8), 1155 (2003)

    CAS  Google Scholar 

  109. Z.-Z. Gu, T. Iyoda, A. Fujishima, O. Sato: Photo reversible regulation of optical stop bands, Adv. Mater. 13(7), 1295 (2001)

    CAS  Google Scholar 

  110. X. Hu, Q. Zhang, Y. Liu, B. Cheng, D. Zhang: Ultrafast three-dimensional tunable photonic crystal, Appl. Phys. Lett. 83(13), 2518 (2003)

    CAS  Google Scholar 

  111. T.L. Spencer, R. Cisek, V. Barzda, U. Philipose, H.E. Ruda, A. Shik: Orientation dependent nonlinear optical effects in ZnSe nanowires, Appl. Phys. Lett. 94(23), 233119 (2009)

    Google Scholar 

  112. R. Cisek, V. Barzda, H.E. Ruda, A. Shik: Nonlinear optical properties of semiconductor nanowires, IEEE J. Sel. Top. Quantum Electron. 17(6), 915–921 (2011)

    CAS  Google Scholar 

  113. B. Li, J. Zou, X.J. Wang, X.H. Liu, J. Zi: Ferroelectric inverse opals with electrically tunable photonic band gap, Appl. Phys. Lett. 83(23), 4704 (2003)

    CAS  Google Scholar 

  114. T.B. Xu, Z.Y. Cheng, Q.M. Zhang, R.H. Baughman, C. Cui, A.A. Zakhidov, J. Su: Fabrication and characterization of three dimensional periodic ferroelectric polymer-silica opal composites and inverse opals, J. Appl. Phys. 88(1), 405 (2000)

    CAS  Google Scholar 

  115. L. Nucara, F. Greco, V. Mattoli: Electrically responsive photonic crystals: A review, J. Mater. Chem. C 3(33), 8449 (2015)

    CAS  Google Scholar 

  116. S. John, K. Busch: Photonic bandgap formation and tunability in certain self-organizing systems, J. Lightwave Technol. 17(11), 1931 (1999)

    CAS  Google Scholar 

  117. J.D. Joannopoulos: The almost-magical world of photonic crystals, Braz. J. Phys. 26(1), 53 (1996)

    Google Scholar 

  118. X. Yoshino, Y. Kawagishi, M. Ozaki, A. Kose: Mechanical tuning of the optical properties of plastic opal as a photonic crystals, Jpn. J. Appl. Phys. Pt. 2 38(7A), L786 (1999)

    CAS  Google Scholar 

  119. T. Xu, N. Zhu, M.Y.C. Xu, L. Wosinski, J.S. Aitchison, H.E. Ruda: Pillar array microsensor, Opt. Express 18(6), 5420 (2010)

    CAS  Google Scholar 

  120. S.W. Leonard, H.M. van Driel, J. Schilling, R.B. Wehrspohn: Ultrafast band edge tuning of a two dimensional silicon photonic crystal via free carrier injection, Phys. Rev. B 66, 161102 (2002)

    Google Scholar 

  121. Y. Sun, E. Rusli, M. Yu, J. Salfi, C. Souza, H.E. Ruda, N. Singh, F.K. Lin, P. Lo, D.L. Kwong: Electrical characteristics and photocurrent spectral response of Si nanowires p-i-n junctions, Opt. Express 19(6), 5464 (2011)

    CAS  Google Scholar 

  122. J. Salfi, C. Stewart, S.V. Nair, C.Y. Chen, S. Yongshun, E. Rusli, F.K. Lin, M. Yu, N. Singh, C.F. de Sousa, H.E. Ruda: Antenna-enhanced and polarisation sensitive photoresponse in arrays of silicon p-i-n nanowires, New J. Phys. 15, 093029 (2013)

    CAS  Google Scholar 

  123. B. Gates, S.H. Park, Y. Xia: Tuning the photonic bandgap properties of crystalline arrays of polystyrene beads by annealing at elevated temperatures, Adv. Mater. 12(9), 653 (2000)

    CAS  Google Scholar 

  124. Y. Song, W. Yin, Y.H. Wang, J.P. Zhang, Y. Wang, R. Wang, J. Han, W. Wang, S.V. Nair, H.E. Ruda: Magneto-plasmons in periodic nanoporous structures, Sci. Rep. 4, 4991 (2014)

    CAS  Google Scholar 

  125. P. A. Bermel, M. Warner: Photonic bandgap structure of highly deformable self-assembling systems, Phys. Rev. E 65(1), 010702 (2001)

    Google Scholar 

  126. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, M. Yonese: Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region, Langmuir 19(4), 977 (2003)

    CAS  Google Scholar 

  127. S. Jun, Y.-S. Cho: Deformation-induced bandgap tuning of 2D silicon-based photonic crystals, Opt. Express 11(21), 2769 (2003)

    Google Scholar 

  128. C.-S. Kee, K. Kim, H. Lim: Tuning of anisotropic optical properties of 2D dielectric photonic crystals, Physica B 338, 153 (2003)

    CAS  Google Scholar 

  129. K. Sumioka, H. Kayashima, T. Tsutsui: Tuning the optical properties of inverse opal photonic crystals by deformation, Adv. Mater. 14(18), 1284 (2002)

    CAS  Google Scholar 

  130. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J.S. Moya, J. Requena, A. Mifsud, V. Fornes: Control of the photonic crystal properties of fcc-packed sub-micrometer SiO2 spheres by sintering, Adv. Mater. 10(6), 480 (1998)

    CAS  Google Scholar 

  131. H. Pier, E. Kapon, M. Moser: Strain effects and phase transitions in photonic crystal resonator crystals, Nature 407, 880 (2000)

    CAS  Google Scholar 

  132. N. Malkova, V. Gopalan: Strain tunable optical valves at T-junction waveguides in photonic crystals, Phys. Rev. B 68, 245115 (2003)

    Google Scholar 

  133. S. Kim, V. Gopalan: Strain tunable photonic band gap crystals, Appl. Phys. Lett. 78(20), 3015 (2001)

    CAS  Google Scholar 

  134. C.W. Wong, P.T. Rakich, S.G. Johnson, M. Qi, H.I. Smith, E.P. Ippen, L.C. Kimmerling, Y. Jeon, G. Barbastathis, S.-G. Kim: Strain-tunable silicon photonic bandgap microcavities in optical waveguides, Appl. Phys. Lett. 84(8), 1242 (2004)

    CAS  Google Scholar 

  135. S.H. Foulger, P. Jiang, A. Lattam, D.W. Smith, J. Ballato, D.E. Dausch, S. Grego, B.R. Stoner: Photonic crystal composites with reversible high-frequency stop band shifts, Adv. Mater. 15(9), 685 (2003)

    CAS  Google Scholar 

  136. S. Rajic, J.L. Corbeil, P.G. Datskos: Feasibility of tunable MEMS photonic crystal devices, Ultramicroscopy 97, 473 (2003)

    CAS  Google Scholar 

  137. N. Matsuura, H. E. Ruda, B. G. Yacobi: Configurable photonic device, US Patent Ser., Vol. 6961501 B2 (2005)

    Google Scholar 

  138. H. Hiller, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler, M. Strassner: Potential for a micromachined actuation of ultra-wide continuously tunable optoelectronic devices, Appl. Phys. B 75, 3 (2002)

    Google Scholar 

  139. W. Suh, S. Fan: Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics, Opt. Lett. 28(19), 1763 (2003)

    Google Scholar 

  140. C.M. Lee, H.J. Lim, C. Schneider, S. Maier, S. Hofling, M. Kamp, Y.H. Lee: Efficient single photon source based on micro-fibre coupled tunable microcavity, Sci. Rep. 5, 14309 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry E. Ruda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ruda, H.E., Matsuura, N. (2017). Nano-Engineered Tunable Photonic Crystals. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_39

Download citation

Publish with us

Policies and ethics