Skip to main content

Selective Filters Design Based Two-Dimensional Photonic Crystals: Modeling Using the 2D-FDTD Method

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering and Control Applications (ICEECA 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 411))

  • 1232 Accesses

Abstract

The photonic crystals are structures whose dielectric index varies in one or more spatial direction. In these latter appear energy band gap for the electromagnetic field, prohibiting propagation of light in certain directions and in certain energies. These characteristics give the photonic crystals having attractive properties for many applications in integrated optic. Precisely, this work is a contribution to the two-dimensional planar photonic crystals in the field of integrated optics. In this paper, we propose novel selective filter topologies by the use of cascaded wave guides. The performance of such structures in terms of transmission and reflection will be performed and analyzed using 2D-FDTD method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abri Badaoui, H.: Étude Et Conception Des Microcomposant A Base Des Cristaux Photonique Bidimensionnelles. Thèse de doctorat en télécommunications, Université Tlemcen (2012)

    Google Scholar 

  2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  Google Scholar 

  3. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  Google Scholar 

  4. Badaoui, H., Feham, M., Abri, M.: Double bends and y-shaped splitter design for integrated optics. Prog. Electromagn. Res. Lett. 28, 129–138 (2012)

    Article  Google Scholar 

  5. Badaoui, H., Feham, M., Abri, M.: Optimized 1×4 Y shaped splitter for integrated optics. Aust. J. Basic Appl. Sci. 5(10), 482–488 (2011)

    Google Scholar 

  6. Rumpf, R.C., Mehta, A., Srinivasan, P., Johnson, E.G.: Design and optimization of space-variant photonic crystal filters. Appl. Opt. 46(23), 5755–5761 (2007)

    Article  Google Scholar 

  7. Shambat, G., Mirotznik, M.S., Euliss, G., Smolski, V.O., Johnson, E.G., Athal, R.A.: Photonic crystal filters for multi-band optical filtering on a monolithic substrate. J. Nanophotonics 3, 031506 (2009)

    Article  Google Scholar 

  8. Strasser, P., Stark, G., Robin, F., Erni, D., Rauscher, K., Wüest, R., Jäckel, H.: Optimization of a 60° waveguide bend in InP-based 2D planar photonic crystals. J. Opt. Soc. Am. B 25, 67–73 (2008)

    Article  Google Scholar 

  9. Russell, P.S.J., Atkin, D.M., Birks, T.A., Roberts, P.J.: Bound modes of two-dimensional photonic crystal waveguides. In: Rarity, J.G, Weisbuch, C. (eds.) Microcavities and Photonic Bandgaps: Physics and Applications, pp. 203–218. Kluwer Academic, Dordrecht (1996)

    Chapter  Google Scholar 

  10. Atkin, D.M., Russell, P.S.J., Birks, T.A., Roberts, P.J.: Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure. J. Mod. Opt. 43, 1035–1053 (1996)

    Article  Google Scholar 

  11. Kanskar, M., Paddon, P., Pacradoui, V., Morin, R., Busch, A., Young, J.F., Johnson, S.R., Mackenzie, J., Tiedje, T.: Observation of leaky slab modes in an air-bridged semiconductor waveguide with two-dimensional photonic lattice. Appl. Phys. Lett. 70, 1438–1440 (1997)

    Article  Google Scholar 

  12. Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Kolodziejaki, L.A.: Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999)

    Article  Google Scholar 

  13. Jiang, B., Zhou, W., Chen, W., Liu, A., Zheng, W.: Design of surface mode photonic crystal T-junction waveguide using coupled-mode theory. J. Opt. Soc. Am. B 28(8), 2038–2041 (2011)

    Article  Google Scholar 

  14. Wright, R.G., Zgol, M., Adebimpe, D., Keenan, E., Mulligan, R., Kirkland, L.V.: Multiresolution nanoscale sensor-based circuit board testing. In: IEEE Autotestcon, 2005, pp. 766–772. IEEE (2005)

    Google Scholar 

  15. Chan, W.L., Moravec, M.L., Baraniuk, R.G., Mittleman, D.M.: Terahertz imaging with compressed sensing and phase retrieval. Opt. Lett. 33, 974–976 (2008)

    Article  Google Scholar 

  16. Kawase, K., Ogawa, Y., Watanabe, Y.: Non-destructive terahertz imaging of illicit drugs using spectral finger prints. Opt. Express 11, 2549–2554 (2003)

    Article  Google Scholar 

  17. Zhang, C.H., Wang, Y.Y., Chen, J., Kang, L., Xu, W.W., Wu, P.H.: Continuous-wave terahertz imaging system based on far-infrared laser source. In: Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006, p. 426. IEEE (2006)

    Google Scholar 

  18. Ibraheem, A., Krumbholz, N., Mittleman, D., Koch, M.: Low-dispersive dielectric mirrors for future wireless terahertz communication systems. IEEE Microw. Wirel. Compon. Lett. 18, 67–69 (2008)

    Article  Google Scholar 

  19. Abri Badaoui, H., Abri, M.: New design of integrated 2D photonic crystal narrow band filters using the FDTD-2D method. Frequenz 68(11–12), 511–518 (2014)

    Google Scholar 

  20. Abri Badaoui, H., Abri, M.: Optimized 1×8 compact splitter based on photonic crystal using the two-dimensional finite-difference time-domain technique. Opt. Eng. 54(6), 067104 (2015)

    Article  Google Scholar 

  21. Taflove, A.: Computational Electromagnetics: The Finite Difference Time Domain Method. Artech House, Boston (1995)

    MATH  Google Scholar 

  22. Koshiba, M., Tsuji, Y., Sasaki, S.: High-performance absorbing boundary conditions for photonic crystal waveguide simulations. IEEE Microwave Wirel. Compon. Lett. 11, 152–154 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadjira Abri Badaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abri Badaoui, H., Abri, M. (2017). Selective Filters Design Based Two-Dimensional Photonic Crystals: Modeling Using the 2D-FDTD Method. In: Chadli, M., Bououden, S., Zelinka, I. (eds) Recent Advances in Electrical Engineering and Control Applications. ICEECA 2016. Lecture Notes in Electrical Engineering, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-319-48929-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48929-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48928-5

  • Online ISBN: 978-3-319-48929-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics