Skip to main content

Hydrocarbon Fuels from Lignocellulose

  • Chapter
  • First Online:
Water, Energy & Food Sustainability in the Middle East

Abstract

The main motivation for biofuels at present is to enable transportation fuels which do not contribute to global warming. Biofuels made from non-food biomass, collectively called lignocellulose, dramatically reduce the net carbon dioxide emissions from light and heavy duty vehicles. Lignocellulose consists of agricultural residue such as corn stover and sugarcane bagasse, waste from forest trimming, and energy crops such as switchgrass and short rotation poplar trees grown on marginally arable land with little irrigation or fertilizer.

In this chapter, catalytic and microbial routes for the conversion of lignocelluose into hydrocarbon biofuels will be reviewed, and the latest status of commercial development of the various routes will be reported. The biomass conversion routes and the order of the chapter is as follows: biomass gasification, pyrolysis, aqueous phase processing with inorganic catalysts and microbes, and biogas production via anaerobic digestion. There has not yet evolved a single dominant strategy for biomass conversion into fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerothermal Group. (2015). http://www.aerothermalgroup.com/latestnews.html. Accessed 7 Dec 2015.

  • Amyris. (2015). Sustainability. https://amyris.com/innovation/sustainability/. Accessed 01 Dec 2015.

  • Anellotech Inc. (2015). New technology to produce clean, renewable chemicals currently made from petroleum. http://anellotech.com/technology. Accessed 3 Dec 2015.

  • Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., & Lens, P. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156.

    Article  CAS  Google Scholar 

  • Ausilio B., Göran B., Martin, J., Marc L., & François V. (2009). Bioenergy- A sustainable and reliable energy resource; A review of status and prospects (Vol. 6). IEA Bioenergy: ExCo.

    Google Scholar 

  • Balat, M. (2008). Mechanisms of thermochemical biomass conversion processes. Part 3: Reactions of liquefaction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30, 649–659.

    Article  CAS  Google Scholar 

  • Balat, M. (2009). Development of worldwide green electricity in the past decade. Energy Sources, Part B: Economics, Planning and Policy, 4, 17–33.

    Article  Google Scholar 

  • Biofuels Digest. (2015). “40 Hottest Smaller Companies in the Advanced Bioeconomy” rankings for 2015–2016. http://www.biofuelsdigest.com/bdigest/tag/hot-40/. Accessed 8th November, 2015.

  • Biomass Technology Group. (2015). http://www.btgworld.com/en/project-development. Accessed 8 Nov 2015.

  • Bocci, E., Sisinni, M., Moneti, M., Vecchione, L., Di Carlo, A., & Villarini, M. (2014). State of art of small scale biomass gasification power systems: A review of the different typologies. Energy Procedia, 45, 247–256.

    Article  CAS  Google Scholar 

  • Boumba, V. A., Economou, V., Kourkoumelis, N., Gousia, P., Papadopoulou, C., & Vougiouklakis, T. (2012). Microbial ethanol production: Experimental study and multivariate evaluation. Forensic Science International, 215, 189–198.

    Article  CAS  Google Scholar 

  • Brown, T. R., & Brown, R. C. (2013). A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels, Bioproducts and Biorefining, 7, 235–245.

    Article  CAS  Google Scholar 

  • BTG Biomass Technology Group & BlueBear. (2015a). Fast pyrolysis. http://www.btgworld.com/nl/rtd/technologies/fast-pyrolysis. Accessed 3 Dec 2015.

  • BTG Biomass Technology Group & BlueBear. (2015b). Official opening empyro. http://www.btg-btl.com/en/company/news/news/article?id=116. Accessed 3 Dec 2015.

  • Calysta Energy. (2015). Gaseous fermentation http://calystaenergy.com/technology/gaseous-fermentation/. Accessed 7 Dec 2015.

  • Cambi. (2015). http://www.cambi.com/Products/CambiTHP. Accessed 7 Dec 2015.

  • Carlos Serrano-Ruiz, J., Luque, R., & Sepulveda-Escribano, A. (2011). Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 40, 5266–5281.

    Article  Google Scholar 

  • Carlson, T. R., Vispute, T. P., & Huber, G. W. (2008). Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem, 1, 397–400.

    Article  CAS  Google Scholar 

  • Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., & Ferrer, I. (2016). Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology, 199, 386–397.

    Article  CAS  Google Scholar 

  • Cheng, Y. T., Wang, Z., Gilbert, C. J., Fan, W., & Huber, G. W. (2012). Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angewandte Chemie, 124, 11259–11262.

    Article  Google Scholar 

  • Collarda, F.-X., Bensakhriab, A., Drobekc, M., & Volled GBlin, J. (2015). Influence of impregnated iron and nickel on the pyrolysis of cellulose. Biomass and Bioenergy, 80, 52–62.

    Article  Google Scholar 

  • Cool Planet Energy Systems. (2015). USDA issues conditional commitment for $91MM loan guarantee to cool planet. http://www.coolplanet.com/sites/default/files/docs/USDA_Issues_Conditional_Commitment_for_%2491MM_Loan_Guarantee_to_Cool_Planet.pdf. Accessed 3 Dec 2015.

  • Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast Pyrolysis Oil. Energy & Fuels, 18, 590–598.

    Article  CAS  Google Scholar 

  • Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). Applied Catalysis B: Environmental, 56(2005), 171–186.

    Article  CAS  Google Scholar 

  • Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50, 1746–1760.

    Article  CAS  Google Scholar 

  • Dupont. (2015). Infographic: Reforming energy. http://www.dupont.com/content/dam/assets/products-and-services/industrial-biotechnology/documents/DuPont_REFORM-ENERGY_infographic_151030.pdf. Accessed 1 Dec 2015.

  • Elshahed, M. S. (2010). Microbiological aspects of biofuel production: Current status and future directions. Journal of Advanced Research, 1, 103–111.

    Article  Google Scholar 

  • Ensyn. (2012). RTP™ process. http://www.ensyn.com/technology/overview/. Accessed 3 Dec 2015.

  • Environmental Protection Agency. (2014) Final Register Vol. 70 No. 138: 42127–42167.

    Google Scholar 

  • Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10, 295–304.

    Article  CAS  Google Scholar 

  • Fu, J., Sun, G., & Shanks, B.H. (2014). Aqueous-phase processing on multi-functional compounds over platinum−rhenium supported on carbon. Energy & Fuels, 28, 21232128. dx.doi.org/10.1021/ef500085v.

    Google Scholar 

  • Galadima, A., & Muraza, O. (2015). In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Conversion and Management, 105, 338–354.

    Article  CAS  Google Scholar 

  • Geantet, C., & Guilhaume, N. (2008, October 22–24). Hydrogen production from biomass. In Vanatrop. Montpellier.

    Google Scholar 

  • Global Bioenergies. (2015). Isobutene process. http://www.global-bioenergies.com/our-groupe/isobutene-process/?lang=en. Accessed 01 Dec 2015.

  • GranBio. (2015). Bioflex I. http://www.granbio.com.br/en/conteudos/biofuels/. Accessed 01 Dec 2015.

  • Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., et al. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108, 504–509.

    Article  CAS  Google Scholar 

  • Hanson, R., & Hanson, T. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471.

    CAS  Google Scholar 

  • Harvest Power. (2015). http://www.harvestpower.com/home/. Accessed 4 Dec 2015.

  • He, M. X., Wu, B., Qin, H., Ruan, Z. Y., Tan, F. R., Wang, J. L., et al. (2014). Zymomonas mobilis: A novel platform for future biorefineries. Biotechnology for Biofuels, 7, 1–15.

    Article  Google Scholar 

  • Hitesh, K., Prashant, B., Pankaj, A., & Soni, S. C. (2014). Effect of moisture content on gasification efficiency in down draft gasifier. International Journal of Science, Engineering and Technology, 3(4), 411–413.

    Google Scholar 

  • Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139, 244–260.

    Article  CAS  Google Scholar 

  • Honeywell International Inc. (2015). UOP breaks ground on facility to convert biomass to green transportation fuels. http://www.uop.com/uop-breaks-ground-facility-convert-biomass-green-transportation-fuels/. Accessed 3 Dec 2015.

  • http://biomassmagazine.com/articles/1674/solar-powered-biomass-gasification

    Google Scholar 

  • http://www.chevron.com/globalissues/energysupplydemand/

  • http://www.eai.in/ref/ae/bio/bgt/type/fixed_bed_gasifier.html

  • http://www.metso.com/news/2013/3/metso-supplied-worlds-largest-biomass-gasification-plant-inaugurated-in-finland/

  • http://www.phgenergy.com/case-study/covington-tenn

  • http://www.unbc.ca/green/energy/bioenergy-plant

  • http://www.westinghouse-plasma.com/projects/

  • Huber, G. W., & Dumesic, J. A. (2006). An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 111, 119–132.

    Article  CAS  Google Scholar 

  • Huber, G., Iborra, S., & Corma, A. (2006a). Chemical Review, 106, 4044.

    Google Scholar 

  • Huber, G. W., Iborra, S., & Corma, A. (2006b). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098.

    Article  CAS  Google Scholar 

  • Islam, R., Sparling, R., Cicek, N., & Levin, D. B. (2015). Optimization of influential nutrients during direct cellulose fermentation into hydrogen by clostridium thermocellum. International Journal of Molecular Sciences, 16, 3116–3132.

    Article  CAS  Google Scholar 

  • Itkulova, S., Zakumbaeva, G., Mukazhanova, A., & Nurmakanov, Y. (2014). Syngas production by biogas reforming over the Co-based multicomponent catalysts. Central European Journal of Chemistry, 12(12), 1255–1261.

    Article  CAS  Google Scholar 

  • Izquierdo, J. A., Pattathil, S., Guseva, A., Hahn, M. G., & Lynd, L. R. (2014). Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material. Biotechnology for Biofuels, 7, 1–8.

    Article  Google Scholar 

  • Jared P. C., John J. M. (2002, June). Benchmarking biomass gasification technologies. U.S. Department of Energy, National Energy Laboratory.

    Google Scholar 

  • Jorgensen, P. (2009). Biogas – Green energy. PlanEnergi, 1–36.

    Google Scholar 

  • Kikas T, Tutt M, Raud M, Alaru M, , Lauk R, Olta J (2016) Basis of energy crop selection for biofuel production: Cellulose vs. lignin. International Journal of Green Energy 13(1): 49–54

    Article  CAS  Google Scholar 

  • Kirtley, J., Steinhurst, D., Owrutsky, J., Pomfret, M., & Walker, R. (2014). In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes. Physical Chemistry Chemical Physics, 227(16), 227–236.

    Article  Google Scholar 

  • Koeck, D. E., Koellmeier, T., Zverlov, V. V., Liebl, W., & Schwarz, W. H. (2015). Differences in biomass degradation between newly isolated environmental strains of Clostridium thermocellum and heterogeneity in the size of the cellulosomal scaffoldin. Systematic and Applied Microbiology, 38, 424–432.

    Article  CAS  Google Scholar 

  • Kohn MP (2012) Catalytic reforming of biogas for syngas production. PhD thesis, Columbia University.

    Google Scholar 

  • Lanzatech. (2015). Turning steelmaking off-gases into marketable commodities. http://www.lanzatech.com/turning-steelmaking-off-gases-into-marketable-commodities/. Accessed 01 Dec 2015.

  • Lynd, L. R., Grethlein, H. E., & Wolkin, R. H. (1989). Fermentation of cellulosic substrates in batch and continuous culture by clostridium thermocellum. Applied and Environmental Microbiology, 55, 3131–3139.

    CAS  Google Scholar 

  • Manikkandan, T., Dhanasekar, R., & Thirumavalavan, K. (2009). Microbial production of hydrogen from sugarcane bagasse using Bacillus Sp. International Journal of ChemTech Research., 1, 344–348.

    CAS  Google Scholar 

  • Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.

    Article  CAS  Google Scholar 

  • Marcin, S., de Wiebren, J., & Adrian, H. M. V. (2011). Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels—A review. Energies, 4, 389–434.

    Article  Google Scholar 

  • Mascomam, LLC. (2015) Consolidated Bioprocessing (CBP) for High Efficiency Fermentation. http://www.mascoma.com/technology/consolidated-bioprocessing/. Accessed 01 Dec 2015.

  • Mohammad, A. (2013). Technical challenges of utilizing biomass gasification gas for power generation: An overview. Journal of Energy Technologies and Policy, 3(11), 137–143.

    Google Scholar 

  • Mohammad, A. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215.

    Article  Google Scholar 

  • Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20, 848–889.

    Article  CAS  Google Scholar 

  • Neira DAngelo, M. F., Schouten, J. C. , van der Schaaf, J. & Nijhuis, T. A. (2014). Three-phase reactor model for the aqueous phase reforming of ethylene glycol. Industrial and Engineering Chemistry Research 53, 1389213902. dx.doi.org/10.1021/ie5007382.

    Google Scholar 

  • Nourredine, A., Sushil, A., Avanti, K., & Shyamsundar, C. (2015). A review on biomass gasification syngas cleanup. Applied Energy, 155, 294–307.

    Article  Google Scholar 

  • Oberon Fuels. (2015). http://www.oberonfuels.com/. Accessed 7 Dec 2015.

  • Olson, D. G., Sparling, R., & Lynd, L. R. (2015). Ethanol production by engineered thermophiles. Current Opinion in Biotechnology, 33, 130–141.

    Article  CAS  Google Scholar 

  • Papadopoulou, C., Matralis, H., & Verykios, X. (2012). Utilization of biogas as a renewable carbon source: dry reforming of methane. In L. Guczi & A. Erdohelyi (Eds.), Catalysis for alternative energy generation (pp. 57–127). New York: Springer.

    Chapter  Google Scholar 

  • POET-DSM. (2015). First commercial-scale cellulosic ethanol plant in the U.S. opens for business. http://poetdsm.com/pr/first-commercial-scale-cellulosic-plant. Accessed 01 Dec 2015.

  • Reed, P. T., Izquierdo, J. A., & Lynd, L. R. (2014). Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor. Bioresource Technology, 155, 50–56.

    Article  CAS  Google Scholar 

  • Regalbuto, J. R. (2009). Cellulosic biofuels: Got gasoline? Science, 325, 822.

    Article  Google Scholar 

  • Regalbuto, J. R. (2011). The sea change in US biofuels’ funding: From cellulosic ethanol to green gasoline. Biofuels, Bioproducts and Biorefining, 5, 495.

    Article  CAS  Google Scholar 

  • Renmatix Inc. (2015). http://renmatix.com/technology/plantrose-technology/plantrose-process. Accessed 8 Nov 2015.

  • Rennovia Inc. (2015). http://www.rennovia.com/technology/. Accessed 8 Nov 2015.

  • Review of technology for the gasification of biomass and wastes. (2009, June). E4tech.

    Google Scholar 

  • Richard, G. R., & Geoffrey, J. B. (2008). The value of technological advance in decarbonizing the U.S. economy. Energy Economics, 30(6), 2930–2946.

    Article  Google Scholar 

  • Rivertop Renewables Inc. (2015). http://www.rivertop.com/solutions/. Accessed 8 Nov 2015.

  • Roeslien Alternative Energy, LLC. (2015). Key phase underway in $120 Million manure to energy project. http://roesleinalternativeenergy.com/rae-smithfield-foods-project-progress-video/. Accessed 7 Dec 2015.

  • Schmack Carbotech. (2014). Schmack Carbotech awarded the contract for gas processing in Stockholm. http://www.carbotech.info/de/press/Schweden_Sofielund.html. Accessed 7 Dec 2015.

  • Silverman Josh. (2014) BioGTL platform for the conversion of natural gas to fuels and chemicals. Calysta Energy. http://calysta.com/pdfs/AIChE_final_33114.pdf. Accessed 7 Dec 2015.

  • Steffen, H., & Pier, U. F. (2015). New concept in biomass gasification. Progress in Energy and Combustion Science, 46, 72–95.

    Article  Google Scholar 

  • The Research University in the Helmholtz Association. (2015). The bioliq® Process: Biomass-to-Liquids (BtL) – The bioliq® Process. http://www.bioliq.de/english/55.php. Accessed 5 Dec 2015.

  • Tollefson, J. (2008). Energy: Not your father’s biofuels. Nature, 451, 880–883.

    Article  CAS  Google Scholar 

  • van Haasterecht, T., Ludding, C. C. I., de Jong, K. P., & Bitter, J. H. (2014). Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions. Journal of Catalysis, 319, 27–35.

    Article  Google Scholar 

  • van Zyl, W. H., la Grange, D. C., & den Haan, R.(2011). Developing organisms for consolidated bioprocessing of biomass to ethanol. INTECH Open Access Publisher.

    Google Scholar 

  • Virent Inc. (2015). http://www.virent.com/technology/bioforming/. Accessed 8 Nov 2015.

  • VTT Technical Research Center of Finland LTD. (2015). Fast pyrolysis – conversion of biomass to bio-oil: Integrated production of fuels and chemicals. http://www.vttresearch.com/services/bioeconomy/liquid-biofuels1/advanced-biodiesel2/fast-pyrolysis-%E2%80%93-conversion-of-biomass-to-bio-oil. Accessed 8 Dec 2015.

  • Wei, Y., Lei, H., Liu, Y., Wang, L., Zhu, L., Zhang, X., et al. (2014). Renewable hydrogen produced from different renewable feedstock by aqueous-phase reforming process. Journal of Sustainable Bioenergy Systems, 4, 113–127.

    Article  CAS  Google Scholar 

  • World Energy Resources. (2013). Bioenergy World Energy Council.

    Google Scholar 

  • Yang, L., Ge, X., Wan, C., Yu, F., & Li, T. (2014). Progress and perspectives in converting biogas to transportation fuels. Renewable and Sustainable Energy Reviews, 40, 1133–1152.

    Article  CAS  Google Scholar 

  • Younes, C., & Mohammed, K. (2013). Thermal conversion of biomass, pyrolysis and gasification: A review. International Journal of Energy and Science, 4(3), 75–85.

    Google Scholar 

  • Yuan, Y., Bi, C., Nicolaou, S., Zingaro, K., Ralston, M., & Papoutsakis, E. (2014). Overexpression of the 59 plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Applied Microbiology and Biotechnology, 98, 8399–8411.

    Article  CAS  Google Scholar 

  • Zhang, J., Shao, X., & Lynd, L. R. (2009). Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: Investigation of discrepancies between predicted and observed performance at high solids concentration. Biotechnology and Bioengineering, 104, 932–938.

    Article  CAS  Google Scholar 

  • Zhang, B., Zhong, Z. P., Chen, P., & Ruan, R. (2015a). Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresource Technology, 197, 79–84.

    Article  CAS  Google Scholar 

  • Zhang, Z. B., Lu, Q., Ye, X. N., Li, W. T., Zhang, Y., & Dong, C. Q. (2015b). Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass. Journal of Analytical and Applied Pyrolysis, 115, 307–315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Regalbuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Regalbuto, J.R., Almalki, F., Liu, Q., Banerjee, R., Wong, A., Keels, J. (2017). Hydrocarbon Fuels from Lignocellulose. In: Murad, S., Baydoun, E., Daghir, N. (eds) Water, Energy & Food Sustainability in the Middle East. Springer, Cham. https://doi.org/10.1007/978-3-319-48920-9_7

Download citation

Publish with us

Policies and ethics