Skip to main content
Book cover

Clusters pp 325–359Cite as

Chemical Reactivity and Catalytic Properties of Binary Gold Clusters: Atom by Atom Tuning in a Gas Phase Approach

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 23))

Abstract

Industrial heterogeneous catalysts are complex multi-component systems which typically contain different transition metal particles supported on porous materials. For the future design of new tailor-made catalytic materials, a molecular level insight into the reaction mechanisms, energetics, and kinetics of the catalytic processes are mandatory. Furthermore, the detailed investigation of the nature of the interaction between different elements in alloy materials and their influence on the catalytic properties is essential. Free clusters in the gas phase represent simplified but suitable model systems which allow to obtain insight into catalytic processes on a rigorously molecular level. In this chapter we summarize experimental and theoretical studies on the reactivity and catalytic activity of free gold clusters and the change of their chemical properties caused by doping these clusters with transition metal atoms. In particular, we focus on three selected catalytic reactions, the oxidation of carbon monoxide, the conversion of methane , and the coupling of methane and ammonia, which have all been shown to be catalyzed by small binary gold clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lloyd L (2011) Handbook of industrial catalysts. Springer, New York, Dordrecht, Heidelberg, London

    Book  Google Scholar 

  2. Sakong S, Mosch C, Groß A (2007) Phys Chem Chem Phys 9:2216; Watanabe M, Motoo S (1975) J Electron Chem 60:267

    Google Scholar 

  3. Schwarz H (2011) Angew Chem Int Ed 50:2

    Google Scholar 

  4. Lang SM, Bernhardt TM (2012) Phys Chem Chem Phys 14:9255

    Article  CAS  Google Scholar 

  5. Gross JH (2011) Mass spectrometry, 2nd edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  6. Haberland H (ed) (1994) Clusters of atoms and molecules: theory, experiment, and clusters of atoms, vol 52. Springer, Berlin; Johnston RL (2002) Atomic and molecular clusters. Taylor & Francis, London

    Google Scholar 

  7. Bernhardt TM, Heiz U, Landman U (2007) In: Heiz U, Landman U (eds) Nanocatalysis. Springer, Berlin, Heidelberg, p 1

    Chapter  Google Scholar 

  8. Keller R, Nöhmeier F, Spädtke P, Schönenberg M-H (1984) Vacuum 34:31; Schaffner M-H, Jeanneret JF, Patthey F, Schneider W-D (1998) J Phys D: Appl Phys 31:3177; Leisner T, Vajda S, Wolf S, Wöste L, Berry RS (1999) J Chem Phys 111:1017; Heim HC, Bernhardt TM, Lang SM (2015) Int J Mass Spectrom 387:56

    Google Scholar 

  9. Dietz TG, Duncan MA, Powers DE, Smalley RE (1981) J Chem Phys 74:6511

    Article  CAS  Google Scholar 

  10. Siekmann HR, Lüder C, Faehrmann J, Lutz HO, Meiwes-Broer KH (1991) Z Phys D 20:417

    Article  CAS  Google Scholar 

  11. Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y (1994) J Vac Sci Technol A 12:2925

    Article  CAS  Google Scholar 

  12. Bouwen W, Thoen P, Vanhoutte F, Bouckaert S, Despa F, Weidele H, Silverans RE, Lievens P (2000) Rev Sci Instrum 71:54

    Article  CAS  Google Scholar 

  13. Yasumatsu H, Fuyuki M, Hayakawa T, Kondow T, Phys J (2009) Conf Ser 185:012057

    Article  Google Scholar 

  14. Ren X, Hintz PA, Ervin KM (1993) J Chem Phys 99:3575; Whetten RL, Cox DM, Trevor DJ, Kaldor A (1985) J Phys Chem 89:566; Leuchtner RE, Harms AC, Castleman AW Jr (1990) J Chem Phys 92:6527

    Google Scholar 

  15. Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499

    Article  CAS  Google Scholar 

  16. Andersson M, Persson JL, Rosén A (1996) J Phys Chem 100:12222

    Article  CAS  Google Scholar 

  17. Veldeman N, Lievens P, Andersson M (2005) J Phys Chem A 109:11793

    Article  CAS  Google Scholar 

  18. Kemper PR, Weis P, Bowers MT (1997) Int J Mass Spectrom 160:17

    Article  CAS  Google Scholar 

  19. Fayet P, McClinchey MJ, Wöste LH (1987) J Am Chem Soc 109:1733; Ichihashi M, Hanmura T, Kondow T (2006) J Chem Phys 125:133404; Bell RC, Zemski KA, Justes DR, Castleman AW Jr (2001) J Chem Phys 114

    Google Scholar 

  20. Bernhardt TM (2005) Int J Mass Spectrom 243:1

    Article  CAS  Google Scholar 

  21. Balteanu I, Balaj OP, Fox BS, Beyer MK, Bastl Z, Bondybey VE (2003) Phys Chem Chem Phys 5:1213

    Article  CAS  Google Scholar 

  22. Neumaier M, Weigend F, Hampe O, Kappes MM (2005) J Chem Phys 122:104702

    Article  Google Scholar 

  23. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  24. Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogeneous catalysis, vol 4. Wiley-VCH, Weinheim

    Google Scholar 

  25. Conrad H, Ertl G, Küppers J (1978) Surf Sci 76:323

    Article  CAS  Google Scholar 

  26. Engel T, Ertl G (1978) J Chem Phys 69:1267

    Article  CAS  Google Scholar 

  27. Lide DR (ed) (1995) Handbook of chemistry and physics. CRC Press, Inc., Boca Raton

    Google Scholar 

  28. Gates BC (1992) Catalytic chemistry. John Wiley & Sons Inc, New York, Singapore

    Google Scholar 

  29. Szanyi J, Kuhn WK, Goodman DW (1994) J Phys Chem 98:2978

    Article  CAS  Google Scholar 

  30. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  31. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405

    Article  Google Scholar 

  32. Bond GC, Louis C, Thompson DT (2006) In: Catalysis by gold. Imperial College Press, London; Haruta M (2004) Gold Bull 37:27; Haruta M, Daté M (2001) Appl Catal A Gen 222:427; Hashmi ASK, Hutchings GJ (2007) Angew Chem Int Ed 45:7896; Braun I, Asiri AM, Hashmi ASK (2013) ACS Catal 3:1902

    Google Scholar 

  33. Cox DM, Brickman R, Creegan K, Kaldor A (1991) Z Phys D 19:353

    Article  CAS  Google Scholar 

  34. Cox DM, Brickman R, Creegan K, Kaldor A (1991) Mat Res Soc Symp Proc 206:43

    Article  CAS  Google Scholar 

  35. Huang W, Zhai H-J, Wang L-S (2010) J Am Chem Soc 132:4344; Sun Q, Jena P, Kim YD, Fischer M, Ganteför G (2004) J Chem Phys 120:6510

    Google Scholar 

  36. Lian L, Hackett PA, Rayner DM (1993) J Chem Phys 99:2583; Stolcic D, Fischer M, Ganteför G, Kim YD, Sun Q, Jena P (2003) J Am Chem Soc 125:2848; Pal R, Wang LM, Pei Y, Wang L-S, Zeng XC (2012) J Am Chem Soc 134:9438; Woodham AP, Meijer G, Fielicke A (2013) J Am Chem Soc 135:1727; Woodham AP, Fielicke A (2014) Angew Chem Int Ed 53:6554

    Google Scholar 

  37. Salisbury BE, Wallace WT, Whetten RL (2000) Chem Phys 262:131

    Article  CAS  Google Scholar 

  38. Hagen J, Socaciu LD, Elijazyfer M, Heiz U, Bernhardt TM, Wöste L (2002) Phys Chem Chem Phys 4:1707

    Article  CAS  Google Scholar 

  39. Lee TH, Ervin KM (1994) J Chem Phys 98:10023

    Article  CAS  Google Scholar 

  40. Lang SM, Bernhardt TM, Barnett RN, Yoon B, Landman U (2009) J Am Chem Soc 131:8939

    Article  CAS  Google Scholar 

  41. Koszinowski K, Schröder D, Schwarz H (2003) Chem Phys Chem 4:1233

    CAS  Google Scholar 

  42. Woodham AP, Meijer G, Fielicke A (2012) Angew Chem Int Ed 51:4444

    Article  CAS  Google Scholar 

  43. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319

    Article  CAS  Google Scholar 

  44. Neumaier M, Weigend F, Hampe O, Kappes MM (2008) Faraday Discuss 138:393

    Article  CAS  Google Scholar 

  45. Fielicke A, van Helden G, Meijer G, Pedersen DB, Simard B, Rayner DM (2005) J Am Chem Soc 127:8416

    Google Scholar 

  46. Fielicke A, van Helden G, Meijer G, Simard B, Rayner DM (2005) J Phys Chem B 109:23935

    Google Scholar 

  47. Hagen J, Socaciu LD, Heiz U, Bernhardt TM, Wöste L (2003) Eur Phys J D 24:327

    Article  CAS  Google Scholar 

  48. Wallace WT, Whetten RL (2000) J Phys Chem B 104:10964; Nygren MA, Siegbahn PEM, Jin C, Guo T, Smalley RE (1991) J Chem Phys 95:6181

    Google Scholar 

  49. Wallace WT, Wyrwas RB, Leavitt AJ, Whetten RL (2005) Phys Chem Chem Phys 7:930

    Article  CAS  Google Scholar 

  50. Popolan DM, Nössler M, Mitrić R, Bernhardt TM, Bonačić-Koutecký V (2011) J Phys Chem A 115:951

    Article  CAS  Google Scholar 

  51. Popolan DM, Nößler M, Mitrić R, Bernhardt TM, Bonačić-Koutecký V (2010) Phys Chem Chem Phys 12:7865

    Article  CAS  Google Scholar 

  52. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) J Chem Phys 117:4010

    Article  CAS  Google Scholar 

  53. Phala NS, Klatt G, van Steen E (2004) Chem Phys Lett 395:33

    Google Scholar 

  54. Fernández EM, Ordejón P, Balbás LC (2005) Chem Phys Lett 408:252

    Article  Google Scholar 

  55. Yuan DW, Zeng Z (2004) J Chem Phys 120:6574

    Article  CAS  Google Scholar 

  56. Schwerdtfeger P, Lein M, Krawczyk RP, Jacob CR (2008) J Chem Phys 128:124302

    Article  Google Scholar 

  57. Häkkinen H, Landman U (2001) J Am Chem Soc 123:9704

    Article  Google Scholar 

  58. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437

    Article  CAS  Google Scholar 

  59. Bernhardt TM, Socaciu-Siebert LD, Hagen J, Wöste L (2005) Appl Catal A: Gen 291:170

    Article  CAS  Google Scholar 

  60. Bernhardt TM, Hagen J, Lang SM, Popolan DM, Socaciu-Siebert LD, Wöste L (2009) J Phys Chem A 113:2724

    Article  CAS  Google Scholar 

  61. Lang SM, Frank A, Fleischer I, Bernhardt TM (2013) Eur Phys J D 67:19, 1

    Google Scholar 

  62. Joshi AM, Delgass WN, Thomson KT (2006) J Phys Chem B 110:23373; Torres MB, Fernández EM, Balbás LC (2008) J Phys Chem A 112:6678; Manzoor D, Krishnamurty S, Pal S (2014) J Phys Chem C 118:7501–7507

    Google Scholar 

  63. Wells BA, Chaffee AL (2008) J Chem Phys 129:164712/1

    Google Scholar 

  64. Peng S-L, Gan L-Y, Tian R-Y, Zhao Y-J (2011) Comp Theor Chem 977:62

    Article  CAS  Google Scholar 

  65. Tian WQ, Ge M, Gu F, Yamada T, Aoki Y (2006) J Phys Chem A 110:6285

    Article  CAS  Google Scholar 

  66. Mondal K, Banerjee A, Fortunelli A, Ghanty TK (2015) J Comput Chem 36:2177

    Article  CAS  Google Scholar 

  67. Ho J, Ervin KM, Lineberger WC (1990) J Chem Phys 93:6987

    Article  CAS  Google Scholar 

  68. Handschuh H, Ganteför G, Bechthold PS, Eberhardt W (1994) J Chem Phys 100:7093; Häkkinen H, Yoon B, Landman U, Li X, Zhai H-J, Wang L-S (2003) J Phys Chem A 107:6168

    Google Scholar 

  69. Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) J Chem Phys 115:3657

    Article  CAS  Google Scholar 

  70. Handshuh H, Cha C-Y, Bechthold PS, Ganteför G, Eberhardt W (1995) J Chem Phys 102:6406

    Article  Google Scholar 

  71. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994

    Article  CAS  Google Scholar 

  72. Neumaier M, Weigend F, Hampe O, Kappes MM (2006) J Chem Phys 125:104308

    Article  Google Scholar 

  73. Haeck JD, Veldeman N, Claes P, Janssens E, Andersson M, Lievens P (2011) J Phys Chem A 115:2103

    Article  Google Scholar 

  74. Joshi AM, Tucker MH, Delgass WN, Thomson KT (2006) J Chem Phys 125:194797

    Article  Google Scholar 

  75. Kuang X, Wang X, Liu G (2012) Struct Chem 23:671

    Article  CAS  Google Scholar 

  76. Song C, Ge Q, Wang L (2005) J Phys Chem B 109:22341; Kuang X, Wang X, Liu G (2012) Eur Phys J App Phys 60:31301; Morrow BH, Resasco DE, Striolo A, Nardelli MB (2011) J Phys Chem C 115:5637

    Google Scholar 

  77. Zhao Y, Li Z, Yang J (2009) Phys Chem Chem Phys 11:2329

    Article  CAS  Google Scholar 

  78. Fernandez EM, Torres MB, Balbas LC (2011) Int J Quantum Chem 111:510

    Article  CAS  Google Scholar 

  79. Li X-N, Yuan Z, He S-G (2014) J Am Chem Soc 136:3617–3623

    Article  CAS  Google Scholar 

  80. Lin L, Lievens P, Nguyen MT (2010) Chem Phys Lett 498:296

    Article  CAS  Google Scholar 

  81. Lüttgens G, Pontius N, Bechthold PS, Neeb M, Eberhardt W (2002) Phys Rev Lett 88:076102

    Article  Google Scholar 

  82. Wang L-M, Pal R, Huang W, Zeng XC, Wang L-S (2010) J Chem Phys 132:114306

    Google Scholar 

  83. Le HT, Lang SM, Haeck JD, Lievens P, Janssens E (2012) Phys Chem Chem Phys 14:9350

    Article  CAS  Google Scholar 

  84. Mitrić R, Bürgel C, Burda J, Bonačić-Koutecký V, Fantucci P (2003) Eur Phys J D 24:41

    Article  Google Scholar 

  85. Wang F, Zhang D, Ding Y (2010) J Phys Chem C 114:14076

    Article  CAS  Google Scholar 

  86. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255

    Article  CAS  Google Scholar 

  87. Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Chem Phys Chem 11:1570

    CAS  Google Scholar 

  88. Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Angew Chem Int Ed 49:980

    Article  CAS  Google Scholar 

  89. Lang SM, Bernhardt TM (2009) Eur Phys J D 52:139

    Article  CAS  Google Scholar 

  90. Lang SM, Bernhardt TM (2011) Faraday Discuss 152:337

    Article  CAS  Google Scholar 

  91. Lang SM, Frank A, Bernhardt TM (2013) Catal Sci Technol 3:2926

    Article  CAS  Google Scholar 

  92. Lang SM, Frank A, Bernhardt TM (2013) Int J Mass Spectrom 354–355:365

    Article  Google Scholar 

  93. Xia F, Cao Z (2006) J Phys Chem A 110:10078

    Article  CAS  Google Scholar 

  94. Wetterer SM, Lavrich DJ, Cummings T, Bernasek SL, Scoles G (1998) J Phys Chem B 102:9266

    Article  CAS  Google Scholar 

  95. Lang SM, Frank A, Bernhardt TM (2013) J Phys Chem C 117:9791

    Article  CAS  Google Scholar 

  96. Weaver JF, Hakanoglu C, Hawkins JM, Asthagiri A (2010) J Chem Phys 132:024709; Kao C-L, Madix RJ (2002) J Phys Chem B 106:8248

    Google Scholar 

  97. Gail E, Gos S, Kulzer R, Lorösch J, Rubo A, Sauer M, Kellens R, Reddy J, Steier N, Hasenpusch W (2000) In Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  98. Endter F, Svendsen M, Raum L (1958) Germany

    Google Scholar 

  99. Endter F (1958) Chemie-Ing-Techn 5:305

    Article  Google Scholar 

  100. Diefenbach M, Brönstrup M, Aschi M, Schröder D, Schwarz H (1999) J Am Chem Soc 121:10614

    Article  CAS  Google Scholar 

  101. Wesendrup R, Schröder D, Schwarz H (1994) Angew Chem Int Ed 33:1174

    Article  Google Scholar 

  102. Aschi M, Brönstrup M, Diefenbach M, Harvey JN, Schröder D, Schwarz H (1998) Angew Chem Int Ed 37:829

    Article  CAS  Google Scholar 

  103. Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344; Zhang X-G, Liyanage R, Armentrout PB (2001) J Am Chem Soc 123:5563

    Google Scholar 

  104. Kummerlöwe G, Balteanu J, Sun Z, Balaj OP, Bondybey VE, Beyer MK (2006) Int J Mass Spectrom 254:183

    Article  Google Scholar 

  105. Lapoutre VJF, Redlich B, van der Meer AFG, Oomens J, Bakker JM, Sweeney A, Mookherjee A, Armentrout PB (2013) J Phys Chem A 117:4115

    Google Scholar 

  106. Achatz U, Berg C, Joos S, Fox BS, Beyer MK, Niedner-Schattenburg G, Bondybey VE (2000) Chem Phys Lett 320:53; Kaldor A, Cox DM (1990) Pure Appl Chem 62:79; Koszinowski K, Schröder D, Schwarz H (2003) J Phys Chem A 107:4999; Hanmura T, Ichihashi M, Kondow T (2002) J Phys Chem A 106:11465; Adlhart C, Uggerud E (2006) Chem Commun 2581

    Google Scholar 

  107. Koszinowski K, Schröder D, Schwarz H (2003) Organometallics 22:3806

    Google Scholar 

  108. Koszinowski K, Schröder D, Schwarz H (2004) Angew Chem Int Ed 43:121

    Article  Google Scholar 

  109. Koszinowski K, Schröder D, Schwarz H (2004) Organometallics 23:1132

    Article  CAS  Google Scholar 

  110. Koszinowski K, Schröder D, Schwarz H (2003) J Am Chem Soc 125:3676

    Article  CAS  Google Scholar 

  111. Olvera-Neria O, Cruz A, Luna-García H, Anguiano-García A, Poulain E, Castillo S (2005) J Chem Phys 123:164302; Zhao S, Tian XZ, Liu JN, Ren YL, Wang JJ (2015) Comp Theo Chem 1055:1; Zhao S, Tian XZ, Liu JN, Ren YL, Ren YL, and Wang JJ (2015) J Clust Sci 491

    Google Scholar 

  112. Aktürk OÜ, Tomak M (2010) Thin Solid Films 518:5195; Pakiari AH, Jamshidi Z (2010) J Phys Chem A 114:9212

    Google Scholar 

  113. Zhao S, Tian XZ, Liu JN, Ren YL, Wang JJ (2014) J Mol Model 20:2467

    Article  Google Scholar 

  114. Zhao SZ, Li GZ, Liu JN, Ren YL, Lu WW, Wang JJ (2014) Eur Phys J D 68:254

    Article  Google Scholar 

  115. Chrétien S, Gordon MS, Metiu H (2004) J Chem Phys 121:9931

    Article  Google Scholar 

  116. Fleischer I, Popolan DM, Krstić M, Bonačić-Koutecký V, Bernhardt TM (2013) Chem Phys Lett 565:74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lang, S.M., Bernhardt, T.M. (2017). Chemical Reactivity and Catalytic Properties of Binary Gold Clusters: Atom by Atom Tuning in a Gas Phase Approach. In: Nguyen, M., Kiran, B. (eds) Clusters. Challenges and Advances in Computational Chemistry and Physics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48918-6_10

Download citation

Publish with us

Policies and ethics