Skip to main content

On Melan’s Theorem in Temperature-Dependent Viscoplasticity

  • Chapter
  • First Online:
Models, Simulation, and Experimental Issues in Structural Mechanics

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 8))

Abstract

In plasticity, Melan’s theorem is a well-known result that is both of theoretical and practical importance. That theorem applies to elastic-plastic structures under time-dependent loading histories, and gives a sufficient condition for the plastic dissipation to remain bounded in time. That situation is classically referred to as shakedown. Regarding fatigue, shakedown corresponds to the most favorable case of high-cycle fatigue. The original Melan’s theorem rests on the assumption that the material properties remain constant in time, independently on the applied loading. Extending Melan’s theorem to time fluctuating elastic moduli is a long standing issue. The main motivation is to extend the range of applications of Melan’s theorem to thermomechanical loading histories with large temperature fluctuations: In such case, the variation of the elastic properties with the temperature cannot be neglected. In this contribution, an extension of Melan’s theorem to elastic-viscoplastic materials with time-periodic elastic moduli is presented. Such a time-dependence may for instance result from time-periodic temperature variations. An illustrative example is presented and supported by numerical results obtained from incremental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It can observed that \(\varvec{\pi }\mathcal {K}(t)\) is bounded if the \(\mathscr {C}(\varvec{x},t)\) is.

References

  1. Ahn YJ, Bertocchi E, Barber J (2008) Shakedown of coupled two-dimensional discrete frictional systems. J Mech Phys Solids 56:3433–3440

    Article  MATH  Google Scholar 

  2. Borino G (2000) Consistent shakedown theorems for materials with temperature dependent yield functions. Int J Solid Struct 37:3121–3147

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis H (1972) Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam

    Google Scholar 

  4. Carvelli C, Cen Z, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69:751–764

    Article  MATH  Google Scholar 

  5. Dang Van K, Papadopoulos IV (1999) Introduction to fatigue analysis in mechanical design by the multiscale approach. In: High-cycle metal fatigue. Springer, Vienna, pp 57–88

    Google Scholar 

  6. European Committee for Standardization (1995) Eurocode 3: design of steel structures, ENV 1993-1-2: general rules—structural fire design. Brussels, Belgium

    Google Scholar 

  7. Halphen B (2005) Elastic perfectly plastic structures with temperature dependent elastic coefficients. Comptes Renuds Mécanique 333:617–621

    Article  Google Scholar 

  8. Halphen B, Di Domizio S (2005) Evolution des structures élastoplastiques dont les coefficients d’élasticité dépendent de la température. In: Actes du 17ème congrès français de mécanique. Troyes, France

    Google Scholar 

  9. Hasbroucq S, Oueslati A, de Saxcé G (2010) Inelastic responses of a two-bar system with temperature-dependent elastic modulus under cyclic thermomechanical loadings. Int J Solid Struct 47:1924–1932

    Article  MATH  Google Scholar 

  10. Hasbroucq S, Oueslati A, de Saxcé G (2012) Analytical study of the asymptotic behavior of a thin plate with temperature-dependent elastic modulus under cyclic thermomechanical loadings. Int J Mech Sci 54:95–104

    Article  MATH  Google Scholar 

  11. Koiter WT (1960) General theorems for elastic-plastic solids. North-Holland, Amsterdam

    MATH  Google Scholar 

  12. König J (1969) A shakedown theorem for temperature dependent elastic moduli. Academie Polonaise des Sciences, Bulletin, Serie des Sciences Techniques 17(3):161–165

    Google Scholar 

  13. Lanchon H (1974) Elastic-plastic torsion of a cylindrical shaft with simply or multiply connected cross section. J de Mecanique 13:267–320

    MathSciNet  Google Scholar 

  14. Ledbetter HM, Naimon ER (1974) Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data 3:897–935

    Article  Google Scholar 

  15. Maitournam H, Pommier B, Thomas JJ (2002) Détermination de la réponse asymptotique d’une structure anélastique sous chargement cyclique. Comptes Rendus Mécanique 330:703–708

    Article  MATH  Google Scholar 

  16. Melan E (1936) Theorie statisch unbestimmter systeme aus ideal-plastischen baustoff. Sitzungsberichte der Deutschen Akademie der Wissenschaften 145:195–218

    MATH  Google Scholar 

  17. Nguyen QS (2003) On shakedown analysis in hardening plasticity. J Mech Phys Solid 51:101–125

    Article  MathSciNet  MATH  Google Scholar 

  18. Peigney M, Stolz C (2001) Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique. Comptes Rendus de l’Académie des Sciences II 329:643–648

    Article  MATH  Google Scholar 

  19. Peigney M, Stolz C (2003) An optimal control approach to the analysis of inelastic structures under cyclic loading. J Mech Phys Solid 51:575–605

    Article  MathSciNet  MATH  Google Scholar 

  20. Peigney M (2010) Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics. Eur J Mech A/Solid 29:784–793

    Article  MathSciNet  Google Scholar 

  21. Peigney M (2014) On shakedown of shape memory alloys structures. Ann Solid Struct Mech 6:17–28

    Article  Google Scholar 

  22. Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solid 71:112–131

    Article  MathSciNet  MATH  Google Scholar 

  23. Pham DC (2008) On shakedown theory for elastic-plastic materials and extensions. J Mech Phys Solid 56:1905–1915

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon JW, Weichert D (2012) Shakedown analysis of engineering structures with limited kinematical hardening. Int J Solid Struct 49:2177–2186

    Article  Google Scholar 

  25. Spiliopoulos KV, Panagiotou KD (2012) A direct method to predict cyclic steady states of elastoplastic structures. Comput Methods Appl Mech Eng 223:186–198

    Article  MathSciNet  MATH  Google Scholar 

  26. Symonds PS (1951) Shakedown in continuous media. J Appl Mech 18:85–89

    MathSciNet  MATH  Google Scholar 

  27. Weichert D, Ponter A (2014) A historical view on Shakedown theory. In: The history of theoretical, material and computational mechanics-mathematics meets mechanics and engineering. Springer, Berlin, pp 169–193

    Google Scholar 

  28. Zarka J, Frelat J, Inglebert G (1988) A new approach to inelastic analysis of structures. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Peigney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peigney, M. (2017). On Melan’s Theorem in Temperature-Dependent Viscoplasticity. In: Frémond, M., Maceri, F., Vairo, G. (eds) Models, Simulation, and Experimental Issues in Structural Mechanics. Springer Series in Solid and Structural Mechanics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-48884-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48884-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48883-7

  • Online ISBN: 978-3-319-48884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics