Skip to main content

Multiplane Cohesive Zone Models Combining Damage, Friction and Interlocking

  • Chapter
  • First Online:
Models, Simulation, and Experimental Issues in Structural Mechanics

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 8))

Abstract

The present work describes a number of cohesive zone models (CZMs) developed over the last decade; the models are derived from a simplified approach to the micro-mechanics of the fracture process. The models are able to separately consider damage and frictional dissipation; moreover, the most recent proposed models account also for intelocking and dilatancy. Initially, the model developed by Alfano and Sacco [6], coupling together damage and friction, is reviewed. A damage variable is introduced, evolving from zero for no damage to one when cohesion is lost. The main idea is to assume that friction only acts on the damaged part of the interface. The evolution of damage is governed by a mixed-mode criterion widely used in composite materials. Then, some thermodynamical consideration is presented, which leads in a simplified context to the result that the value of the fracture energy in mode I and II has to be the same [44]. A microstructured interface model is presented, obtained as combination of more inclined planes; this model is named as Representative Multiplane Element (RME) and it shows different fracture energies in mode I and II as result of the interplay between residual adhesion and the frictional slips on the inclined elementary planes, which determines significant frictional dissipation also in pure more II. The RME model is also able to account for interlocking and dilatancy [43]. Numerical applications illustrating the capacity of the proposed models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theme ICOLD, A2—imminent failure flood for a concrete gravity dam, (1999) 5th International Benchmark Workshop on Numerical Analysis of Dams. Denver, ICOLD

    Google Scholar 

  2. Albarella M, Serpieri R, Alfano G, Sacco E (2015) A 3d multiscale cohesive zone model for quasi-brittle materials accounting for friction, damage and interlocking. Eur J Comput Mech 24(4):144–170

    MATH  Google Scholar 

  3. Alfano G (2006) On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol 66(6):723–730

    Article  Google Scholar 

  4. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736

    Article  MATH  Google Scholar 

  5. Alfano G, Crisfield MA (2003) Solution strategies for the delamination analysis based on a combination of local-control arc length and line searches. Int J Numer Methods Eng 58(7):999–1048

    Article  MATH  Google Scholar 

  6. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68(5):542–582

    Article  MathSciNet  MATH  Google Scholar 

  7. Alfano G, Marfia S, Sacco E (2006) A cohesive damage-friction interface model accounting for water pressure on crack propagation. Comput Methods Appl Mech Eng 196(1–3):192–209

    Article  MATH  Google Scholar 

  8. Areias PMA, Belytschko T (2005) Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng 62(3):384–415

    Article  MATH  Google Scholar 

  9. Aubertin P, Rethore J, de Borst R (2010) A coupled molecular dynamics and extended finite element method for dynamic crack propagation. Int J Numer Methods Eng 81(1):7–88

    MathSciNet  MATH  Google Scholar 

  10. Barbieri E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53(2):325–342

    Article  MathSciNet  MATH  Google Scholar 

  11. Barenblatt GI (1962) Mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(55):55–129

    Article  MathSciNet  Google Scholar 

  12. Bechel VT, Sottos NR (1998) Application of debond length measurements to examine the mechanics of fiber pushout. J Mech Phys Solids 46(9):1675–1697

    Article  MATH  Google Scholar 

  13. Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438

    Article  Google Scholar 

  14. Campilho MD, Banea Neto, J.A.B.P., da Silva, L.F.M. (2013) Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes 44:48–56

    Google Scholar 

  15. Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39(10):2827–2855

    Article  MATH  Google Scholar 

  16. Crisfield MA, Alfano G (2002) Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model. Int J Numer Methods Eng 54(9):1369–1390

    Article  MATH  Google Scholar 

  17. Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech-A/Solids 29(4):496–507

    Article  MathSciNet  Google Scholar 

  18. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  19. Germain P (1973). Cours de mcanique des milieux continus, vol 1. Masson

    Google Scholar 

  20. Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc A221:16–198

    Google Scholar 

  21. Hibbitt Karlsson, Sorensen, (1977) ABAQUS: theory manual. Hibbitt, Karlsson and Sorensen

    Google Scholar 

  22. Hilleborg A, Moder M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concrete Res 6:773–782

    Article  Google Scholar 

  23. Kent DC, Park R (1971) Flexural members with confined concrete. J Struct Div 97(7):1969–1990

    Google Scholar 

  24. Kulkarni MG, Geubelle PH, Matous K (2009) Multi-scale modeling of heterogeneous adhesives: Effect of particle decohesion. Mech Mater 41(5):573–583

    Article  Google Scholar 

  25. La Borderie C, Pijaudier-Cabot G (1992) Influence of the state of the stress in concrete on the behavior of steel concrete interface. In: Bazant ZP (ed) Fracture Mechanics of Concrete Structures. Breckenridge, USA, pp 830–835

    Google Scholar 

  26. La Borderie C, Pijaudier-Cabot G (1992) Influence of the state of the stress in concrete on the behaviour of steel concrete interface. Concrete fracture mechanics of structures, Colorado, USA

    Google Scholar 

  27. Lee HS, Park YJ, Cho TF, You KH (2001) Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading. Int J Rock Mech Min Sci 38(7):967–980

    Article  Google Scholar 

  28. Lin G, Geubelle PH, Sottos NR (2001) Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct 38(46–47):8547–8562

    Article  MATH  Google Scholar 

  29. Loureno PB (1996) Computational strategies for masonry structures. Delft University Press, PhD Dissertation

    Google Scholar 

  30. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  31. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2011) Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Comput Methods Appl Mech Eng 200(9–12):1220–1236

    Article  MATH  Google Scholar 

  32. Nguyen VP, Kerfriden P, Bordas SPA (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Composites: part B -. Engineering 60:193–212

    Google Scholar 

  33. Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64:060802

    Article  Google Scholar 

  34. Parrinello F, Marannano G, Borino G (2016) A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination. Eng Fract Mech 153:61–79

    Article  Google Scholar 

  35. Rabczuk T, Areias PMA, Belytschko T (2007) A simplified mesh-free method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69(5):993–1021

    Article  MATH  Google Scholar 

  36. Raous M, Cangmi L, Cocu M (1999) A consistent model coupling adhesion, friction, and unilateral contact. Comput Methods Appl Mech Eng 177:383–399

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar RT (2015) Convex analysis. Princeton University Press

    Google Scholar 

  38. Sacco E, Toti J (2010) Interface elements for the analysis of masonry structures. Int J Comput Methods Eng Sci Mech 11:354–373

    Article  MATH  Google Scholar 

  39. Samimi M, van Dommelen JAW, Geers MGD (2009) An enriched cohesive zone model for delamination in brittle interfaces. Int J Numer Method Eng 80(5):609–630

    Article  MATH  Google Scholar 

  40. Samimi M, van Dommelen JAW, Geers MGD (2011) A three-dimensional self-adaptive cohesive zone model for interfacial delamination. Comput Methods Appl Mech Eng 200(49–52):3540–3553

    Article  MathSciNet  MATH  Google Scholar 

  41. Serpieri R, Alfano G (2011) Bond-slip analysis via a thermodynamically consistent interface model combining interlocking, damage and friction. Int J Numer Methods Eng 85(2):164–186

    Article  MATH  Google Scholar 

  42. Serpieri R, Varricchio L, Sacco E, Alfano G (2014) Bond-slip analysis via cohesive-zone model simulating damage, friction and interlocking. Fract Struct Integrity 29:284–292

    Google Scholar 

  43. Serpieri R, Alfano G, Sacco E (2015) A mixed-mode cohesive-zone model accounting for finite dilation and asperity degradation. Int J Solids Struct 67–68:102–115

    Article  Google Scholar 

  44. Serpieri R, Sacco E, Alfano G (2015) A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies. Eur J Mech—A/Solids 49:13–25

    Article  MathSciNet  Google Scholar 

  45. Sørensen BF, Jacobsen TK (2009) Characterizing delamination of fibre composites by mixed mode cohesive laws. Compos Sci Technol 69(3):445–456

    Article  Google Scholar 

  46. Tassios TP (1979) Properties of bond between concrete and steel under load cycles idealizing seismic actions. Bulletin dinformation du CEB 131:65–122

    Google Scholar 

  47. Valoroso N, Champaney L (2006) A damage-mechanis-based approach for modelling decohesion in adhesively bonded joints. Eng Fract Mech 73(18):2774–2801

    Article  Google Scholar 

  48. Verhoosel CV, Remmers JJC, Gutierrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77(9):1290–1321

    Article  MATH  Google Scholar 

  49. Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) Three-dimensional crack propagation with distance-based discontinuous kernels in mesh free methods. Int J Numer Methods Eng 87(1–5):336–360

    Article  Google Scholar 

  50. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Sacco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sacco, E., Serpieri, R., Alfano, G. (2017). Multiplane Cohesive Zone Models Combining Damage, Friction and Interlocking. In: Frémond, M., Maceri, F., Vairo, G. (eds) Models, Simulation, and Experimental Issues in Structural Mechanics. Springer Series in Solid and Structural Mechanics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-48884-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48884-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48883-7

  • Online ISBN: 978-3-319-48884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics