Skip to main content

Experimental Analysis of a Tuned Mass Damper with Eddy Currents Damping Effect

  • Chapter
  • First Online:
Models, Simulation, and Experimental Issues in Structural Mechanics

Abstract

A Tuned Mass Damper (TMD) is a structural passive control device fixed on a structure and composed of a linear oscillator which natural frequency is tuned to that of the structure, or to the dominant resonance frequency. In this paper, an experimental TMD with adjustable stiffness and eddy current damping is proposed. The first step is to check if the dynamical properties of the proposed TMD are constant during the dynamic test and for different values of stiffness and damping. Therefore, the instantaneous modal parameters are evaluated by applying the continuous wavelet transform on the experimental data. Then, the TMD is set with optimal parameters and used to control vibrations of a frame scale model. The structure response with and without the TMD is evaluated from the experimental measurements in case of a shock applied to the top floor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allani A (2015) Conception et optimisation d’amortisseurs à masse accordée pour les structures du génie civil. PhD Thesis, Università di Roma Tor Vergata & Université Paris Est

    Google Scholar 

  2. Allemang RJ (2003) The modal assurance criterion—twenty years of use and abuse. Sound Vib 14–20

    Google Scholar 

  3. Asami T, Nishihara O, Baz AM (2001) Closed-form exact solution to \(H_2\) optimization of dynamic vibration absorber attached to damper linear systems. Trans Jpn Soc Mech Eng 67(655):597–603

    Article  Google Scholar 

  4. Bae JS, Hwang JH, Roh JH, Kim JH, Yi MS, Lim JH (2012) Vibration suppression of a cantilever beam using magnetically tuned-mass-damper. J Sound Vib 331(26):5669–5684

    Article  Google Scholar 

  5. Bekdaç G, Nigdeli SM (2011) Estimating optimum parameters of tuned mass dampers using harmony search. J Sound Vib 33:2716–2723

    Google Scholar 

  6. Den Hartog JP (1956) Mechanical vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  7. Ebrahimi B, Khamesee MB, Golnaraghi F (2008) Design and modeling of a magnetic shock absorber based on eddy current damping effect. J Sound Vib 315:875–889

    Article  Google Scholar 

  8. Frham H (1909) Device for damped vibrations of bodies. U.S. Patent No. 989958, Oct. 30

    Google Scholar 

  9. Fujino Y, Abe M (1993) Design formulas for tuned mass dampers based on a perturbation technique. Earthquake Eng Struct Dyn 22(10):833–854

    Article  Google Scholar 

  10. Gambarelli P, Vincenzi L (2015) A surrogate-assisted evolutionary algorithm for dynamic structural identification. CRC Press, Engineering Optimization IV

    Google Scholar 

  11. Gentile C (2007) Operational modal analysis of curved cable-stayed bridges, 2nd Int. Operational modal analysis conf, Copenaghen, Denmark

    Google Scholar 

  12. Graves KE, Toncich D, Iovenitti PG (2000) Theoretical comparison of motional and transformer EMF device damping efficiency. J Sound Vib 233(3):441–453

    Article  Google Scholar 

  13. Greco R, Marano GC (2013) Optimum design of Tuned Mass Dampers by displacement and energy perspectives. Soil Dyn Earthq Eng 49:243–253

    Article  Google Scholar 

  14. Hadi MN, Arfiadi Y (1998) Optimum design of absorber for MDOF structures. J Struct Eng 124(11):1272–1280

    Article  Google Scholar 

  15. Kwok KCS, Samali B (1995) Performance of tuned mass dampers under wind loads. Eng Struct 17(9):655–667

    Article  Google Scholar 

  16. Krenk S (2005) Frequency analysis of the tuned mass damper. J Appl Mech 72:936–942

    Article  MATH  Google Scholar 

  17. Le TP, Argoul P (2004) Continuous wavelet transform for modal identification using free decay response. J Sound Vib 277(3):73–100

    Article  Google Scholar 

  18. Lee C, Chen Y (2006) Optimal design theories and applications of tuned mass dampers. Eng Struct 28:43–53

    Article  Google Scholar 

  19. Lo Feudo S, Allani A et al (2015) Experimental tuned mass damper based on eddy currents damping effect and adjustable stiffness. 12\(^{\grave{e}me}\) Colloque National en Calcul des structures

    Google Scholar 

  20. Mordini A, Savov K (2007) The finite element model updating: a powerful tool for structural health monitoring. Struct Eng Int 17(4):352–358

    Article  Google Scholar 

  21. Nishihara O, Asami T (2002) Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). J Vib Acoust 124(4):576–582

    Article  Google Scholar 

  22. Rana R, Soong TT (1998) Parametric study and simplified design of tuned mass dampers. Eng Struct 20(3):193–204

    Article  Google Scholar 

  23. Sadek F, Mohraz B, Taylor AW, Chung RM (1997) A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq Eng Struct Dyn 26(6):617–636

    Article  Google Scholar 

  24. Sodano HA, Bae J (2004) Eddy current damping in structures. Vib Shock Handb 36:469–478

    Article  Google Scholar 

  25. Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, New York

    Google Scholar 

  26. Wang Z, Chen Z, Wang J (2012) Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism. Earthq Eng Eng Vib 11(3):391–401

    Article  Google Scholar 

  27. Zilletti M, Elliott SJ, Rustighi E (2012) Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J Sound Vib 331:4093–4100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Lo Feudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lo Feudo, S., Allani, A., Cumunel, G., Argoul, P., Maceri, F., Bruno, D. (2017). Experimental Analysis of a Tuned Mass Damper with Eddy Currents Damping Effect. In: Frémond, M., Maceri, F., Vairo, G. (eds) Models, Simulation, and Experimental Issues in Structural Mechanics. Springer Series in Solid and Structural Mechanics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-48884-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48884-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48883-7

  • Online ISBN: 978-3-319-48884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics