Skip to main content

Incompressibility and Large Deformations

  • Chapter
  • First Online:
  • 970 Accesses

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 8))

Abstract

We present a new point of view on the motion of an incompressible solid with large deformations. The description of the shape changes of the solid involves the stretch matrix \(\mathbf {W}\) of the classical polar decomposition. The incompressibility condition is \(\det \mathbf {W}\,\ge \,1\), accounting for possible cavitation or phase change. The reaction to the incompressibility condition is a pressure which is positive. There is cavitation or phase change when the pressure is null. The motion of a three-dimensional solid is investigated between time 0 and a final time \(T>0\). It is possible to prove that the model is coherent in terms of mechanics and mathematics. Let us note that the pressure is a measure allowing possible internal collisions due to cavitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New York. Appl Math Sci 107

    Google Scholar 

  2. Bonetti E, Colli P, Frémond M (2013) The motion of a solid with large deformations. Comptes Rendus de l’Académie des Sciences, Series I 351:579–583

    MathSciNet  MATH  Google Scholar 

  3. Bonetti E, Colli P, Frémond M (2014) 2D motion with large deformations. Bollettino dell’Unione Matematica Italiana 7:19–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonetti E, Colli P, Frémond M (2014) The 3D motion of a solid with large deformations. Comptes Rendus Mathematique 352(3):183–187

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet PG (1988) Mathematical elasticity, volume I: three-dimensional elasticity. North-Holland, Amsterdam

    Google Scholar 

  6. Ciarlet PG, Gratie L, Iosifescu O, Mardare C, Vallée C (2007) Another approach to the fundamental theorem of Riemannian geometry in \(\mathbb{R}^{3}\), by way of rotation fields. Journal de Mathématiques Pures et Appliquées 87:237–252

    Article  MathSciNet  MATH  Google Scholar 

  7. Frémond M (2007) Collisions. Ed. Dip. Ing. Civ., Università di Roma Tor Vergata, Rome. ISBN 9 788862 960007

    Google Scholar 

  8. Frémond M (2009) Grandes déformations et comportements extrêmes. Comptes Rendus Mécanique 337(1):24–29

    Article  Google Scholar 

  9. Frémond M (2009) Équilibre d’un solide élastique en grandes déformations. Comptes Rendus Mathematique 347(7):457–462

    Article  MathSciNet  Google Scholar 

  10. Frémond M (2012) Phase change in mechanics. UMI-Springer lecture notes series, 13. Springer Science & Business Media

    Google Scholar 

  11. Frémond M (2016) Virtual work and phase change. Springer series in solid and structural mechanics, 7. doi:10.1007/978-3-319-40682-4

  12. Moreau JJ (1965) Sur la naissance de la cavitation dans une conduite. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 259(22):3948–3950

    MathSciNet  MATH  Google Scholar 

  13. Moreau JJ (1966) Séminaire sur les équations aux dérivées partielles. Collège de France, Paris

    Google Scholar 

  14. Moreau JJ (1966) Principes extrêmaux pour le problème de la naissance de la cavitation. Journal de Mécanique 5:439–470

    Google Scholar 

  15. Moreau JJ (2003) Fonctionnelles convexes. Ed. Dip. Ing. Civ., Università di Roma Tor Vergata, Rome

    Google Scholar 

  16. Salençon J (1988) Mécanique des milieux continus. Ellipses, Paris

    Google Scholar 

  17. Vallée C (1992) Compatibility equations for large deformations. Int J Eng Sci 30(12):1753–1757

    Article  MathSciNet  MATH  Google Scholar 

  18. Vallée C, Lerintiu C, Chaoufi J, Fortuné D, Ban M, Atchonouglo K (2013) A class of non-associated materials: n-monotone materials. Hooke’s law of elasticity revisited. J Elast 112(2):111–138

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bonetti, E., Frémond, M. (2017). Incompressibility and Large Deformations. In: Frémond, M., Maceri, F., Vairo, G. (eds) Models, Simulation, and Experimental Issues in Structural Mechanics. Springer Series in Solid and Structural Mechanics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-48884-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48884-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48883-7

  • Online ISBN: 978-3-319-48884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics