Skip to main content

Chlorophyll Fluorescence for High-Throughput Screening of Plants During Abiotic Stress, Aging, and Genetic Perturbation

  • Chapter
  • First Online:
Photosynthesis: Structures, Mechanisms, and Applications

Summary

Chlorophyll (Chl) is nature’s gift to oxygenic photosynthetic organisms which capture solar radiation and convert it into chemical energy to drive the whole process of photosynthesis for proper growth and development of plants. Understanding the responses of photosynthetic apparatus in crop plants under various stress conditions has become a major target for many research programs. In this chapter, we describe the principal of Chl fluorescence and the recent advances in the application of Chl fluorescence. Chl fluorescence measurement is one of the most useful, cost-effective, and non-invasive tools to measure efficiency of photosystem II photochemistry. Incorporated with improved imaging and computer technologies, it can be utilized on a small or large scale for examination of photosynthetic performance, stress tolerance, and aging. Further advancements are being made to develop efficient more tools to apply Chl fluorescence measurement for large-scale high-throughput photosynthesis phenotyping, forestry and crop management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JF (1975) Oxygen reduction and optimum production of ATP in photosynthesis. Nature 256:599–600. doi: 10.1038/256599a0

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2014) On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Photosynth Res 119:141–156.

    Article  PubMed  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61. doi: 10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184:10–20.

    CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190.

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu Rev Plant Biol 59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, cell & Environ 30:1107–1125.

    Article  CAS  Google Scholar 

  • Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence In Arabidopsis thaliana. Plant Biol 10:63–75. doi: 10.1111/plb.2008.10.issue-s1

    Article  PubMed  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35:161–173.

    Article  Google Scholar 

  • Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Ecophysiology of photosynthesis. Springer, pp 17–47

    Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: Why chlorophyll a? Photosynth Res 99:85–98. doi: 10.1007/s11120-008-9395-x

    Article  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, et al (2011) High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation. Plant Cell 23:873–894. doi: 10.1105/tpc.111.083345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199.

    Article  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784.

    Article  CAS  PubMed  Google Scholar 

  • Cortese K, Diaspro A, Tacchetti C (2009) Advanced Correlative Light/Electron Microscopy: Current Methods and New Developments Using Tokuyasu Cryosections. J Histochem Cytochem 57:1103–1112. doi: 10.1369/jhc.2009.954214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damm A, Elbers JAN, Erler A, et al (2010) Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob Chang Biol 16:171–186.

    Article  Google Scholar 

  • Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL (2005) Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens Environ 97:403–414.

    Article  Google Scholar 

  • Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The Dynamics of Photosynthesis. Annu Rev Genet 42:463–515. doi: 10.1146/annurev.genet.42.110807.091452

    Article  CAS  PubMed  Google Scholar 

  • Finkel E (2009) With “Phenomics,” Plant Scientists Hope to Shift Breeding Into Overdrive. Science 325:380–381.

    Google Scholar 

  • Flexas J, Briantais J-M, Cerovic Z, et al (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sens Environ 73:283–297.

    Article  Google Scholar 

  • Flexas J, Escalona JM, Evain S, et al (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol Plant 114:231–240.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environ 28:1056–1071.

    Article  CAS  Google Scholar 

  • Freedman A, Cavender-Bares J, Kebabian PL, et al (2002) Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate. Photosynthetica 40:127–132.

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16:635–644.

    Article  CAS  PubMed  Google Scholar 

  • Gamon JA, Field CB, Bilger W, et al (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Garbulsky MF, Filella I, Verger A, Peñuelas J (2013) Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation.

    Google Scholar 

  • Gepstein S (2004) Leaf senescence-not just awear and tear’phenomenon. Genome Biol 5:212–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.

    Article  CAS  PubMed  Google Scholar 

  • Govindjee (1995) 63 Years since Kautsky Chlorphyll -a fluorescence. Aust J Plant Physiol 131–160.

    Google Scholar 

  • Guo Y, Gan S (2005) Leaf Senescence: Signals, Execution, and Regulation. Elsevier

    Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci 8762–8767.

    Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162. doi: 10.1016/j.tplants.2009.01.002

    Article  PubMed  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224–230.

    Article  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim et Biophys Acta 1817:182–193. doi: 10.1016/j.bbabio.2011.04.012

    Article  CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822.

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci United States Am 103:814–819.

    Article  CAS  Google Scholar 

  • Kim JH, Woo HR, Kim J, et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057.

    Article  CAS  PubMed  Google Scholar 

  • Konishi A, Eguchi A, Hosoi F, Omasa K (2009) 3D monitoring spatio–temporal effects of herbicide on a whole plant using combined range and chlorophyll a fluorescence imaging. Funct Plant Biol 36:874–879.

    Article  CAS  Google Scholar 

  • Kreslavski VD, Zorina AA, Los DA, Fomina IR, and Allakhverdiev SI (2013) Molecular Mechanisms of StressResistance of Photosynthetic Machinery. Mol. Stress Physiol. Plants 21–50.

    Google Scholar 

  • Kusaba M, Ito H, Morita R, et al (2007) Rice NON-YELLOW COLORING1 Is Involved in Light-Harvesting Complex II and Grana Degradation during Leaf Senescence. Plant Cell 19:1362–1375. doi: 10.1105/tpc.106.042911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234.

    Article  CAS  PubMed  Google Scholar 

  • Lausch A, Pause M, Merbach I, et al (2013) A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape. Environ Monit Assess 185:1215–1235.

    Article  PubMed  Google Scholar 

  • Li J, Pandeya D, Nath K, et al (2010) ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J 62:713–725.

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi: 10.1146/annurev.arplant.57.032905.105316

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Hall DA, Last RL (2011a) A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell 1861–1875.

    Google Scholar 

  • Lu Y, Savage LJ, Larson MD, et al (2011b) Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants. Plant Physiol 155:1589–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenovsky Z, Mishra KB, Zemek F, et al (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60:2987–3004.

    Article  CAS  PubMed  Google Scholar 

  • Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668. doi: 10.1093/jexbot/51.345.659

    CAS  PubMed  Google Scholar 

  • Meroni M, Rossini M, Guanter L, et al (2009) Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens Environ 113:2037–2051.

    Article  Google Scholar 

  • Miller MB, Tang Y-W (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Mishra KB, Höermiller II, et al (2011) Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions.

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19.

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra PK, Joshi P, Ramaswamy NK, et al (2013) Damage of photosynthetic apparatus in the senescing basal leaf of Arabidopsis thaliana: A plausible mechanism of inactivation of reaction center II. Plant Physiol Biochem 62:116–121.

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998.

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Jajoo A, Poudyal RS, et al (2013a) Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 587:3372–3381. doi: 10.1016/j.febslet.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Phee B-K, Jeong S, et al (2013b) Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana. Photosynth. Res. 117:547–556.

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Poudyal RS, Eom J-S, et al (2013c) Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa). Plant J 76:675–686. doi: 10.1111/tpj.2013.76.issue-4

    Article  CAS  PubMed  Google Scholar 

  • Oh M-H (2003) Increased Stability of LHCII by Aggregate Formation during Dark-Induced Leaf Senescence in the Arabidopsis Mutant, ore10. Plant Cell Physiol. 44:1368–1377.

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Park J-H, Lee GI, et al (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535.

    Article  CAS  PubMed  Google Scholar 

  • Omasa K, Konishi A, Tamura H, Hosoi F (2009) 3D confocal laser scanning microscopy for the analysis of chlorophyll fluorescence parameters of chloroplasts in intact leaf tissues. Plant cell Physiol 50:90–105.

    Article  CAS  PubMed  Google Scholar 

  • Oxborough K, Baker NR (1997) An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell & Environ 20:1473–1483.

    Article  Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, et al (2007) The Senescence-Induced Staygreen Protein Regulates Chlorophyll Degradation. Plant Cell 19:1649–1664. doi: 10.1105/tpc.106.044891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants.

    Google Scholar 

  • Porcar-Castell A (2011) A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol Plant 143:139–153.

    Article  CAS  PubMed  Google Scholar 

  • Pottier M, Masclaux-Daubresse C, Yoshimoto K, Thomine S (2014) Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Front Plant Sci. doi: 10.3389/fpls.2014.00011

    PubMed  PubMed Central  Google Scholar 

  • Rascher U, Agati G, Alonso L, et al (2009) CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands.

    Google Scholar 

  • Rascher U, Damm A, van der Linden S, et al (2010) Sensing of photosynthetic activity of crops. In: Precision Crop Protection-the Challenge and Use of Heterogeneity. Springer, pp 87–99

    Google Scholar 

  • Rauf M, Arif M, Dortay H, et al (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO reports – Issue 14:382–388. doi: 10.1038/embor.2013.24

    Article  CAS  Google Scholar 

  • Rousseau C, Belin E, Bove E, et al (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann. Bot. 103:609–622.

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Schelbert S, Park S-Y, et al (2012) STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis. Plant Cell 24:507–518. doi: 10.1105/tpc.111.089474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environ 28:269–277.

    Article  CAS  Google Scholar 

  • Slonim DK, Yanai I, Troyanskaya OG (2009) Getting Started in Gene Expression Microarray Analysis. PLoS Comput Biol 5:1000543. doi: 10.1371/journal.pcbi.1000543

    Article  Google Scholar 

  • Soukupová J, Cséfalvay L, Urban O, et al (2008) Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone. Funct Plant Biol 35:63–76.

    Article  Google Scholar 

  • Sperdouli I, Moustakas M (2011) Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Biol. doi: 10.1111/j.1438-8677.2011.00473.x

    PubMed  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B: Biol 104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi: 10.1016/j.tplants.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  • Tessmer OL, Jiao Y, Cruz JA, et al (2013) Functional approach to high-throughput plant growth analysis. BMC Syst Biol 7:1–13.

    Article  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337.

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Ougham H, Canter P, Donnison I (2002) What stay-green mutants tell us about nitrogen remobilization in leaf senescence. J Exp Bot 53:801–808.

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Nurmi M, Kangasjärvi S, Aro E-M (2008) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim et Biophys Acta 1777:1432–1437.

    Article  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh J (1999) The photosynthetic process. In: Concepts in Photobiology. Springer, pp 11–51

    Google Scholar 

  • Woo HR, Chung KM, Park J-H, et al (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 1779–1790.

    Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932.

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2012) Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J cell Sci 126:4823–4833. doi: 10.1242/jcs.109116

    Article  Google Scholar 

  • Yang Z, Ohlrogge JB (2008) Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis ?-oxidation mutants. Plant Physiol 150:1981–1989.

    Article  Google Scholar 

  • Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 283–294.

    Google Scholar 

  • Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ (2013) Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens Environ 133:102–115.

    Article  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth. Res. 119:339–354.

    Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. National Science Foundation Grant MCB-1244008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Nath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nath, K., O’Donnell, J.P., Lu, Y. (2017). Chlorophyll Fluorescence for High-Throughput Screening of Plants During Abiotic Stress, Aging, and Genetic Perturbation. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_12

Download citation

Publish with us

Policies and ethics