Skip to main content

Photosynthetic Responses Under Harmful and Changing Environment: Practical Aspects in Crop Research

  • Chapter
  • First Online:

Summary

Climate change at global and regional scales as well as increased needs for crop production is predicted, emphasizing the urgent need for introduction of crops with enhanced productivity and tolerance to unfavorable abiotic conditions. Unlike to previous breeding strategies in main crops, the future gain in yield potential can be obtained probably only through an increase of photosynthetic productivity in optimum as well as in stress conditions. This fact emphasizes the importance of photosynthetic measurements, especially those based on non-invasive techniques, useful in real selection of crop genotypes. Photosynthetic responses at the leaf or canopy level can be well characterized by measurements of gas exchange and chlorophyll fluorescence which help to identify different sensitive components and important protective mechanisms within the photosynthetic apparatus. This chapter focuses on actual experiences with the photosynthetic measurements in strategic crops, applications and limits of ecophysiological methodology in detection of crop photosynthetic productivity as well as in the screening for improved drought and heat stress tolerance. The chapter also outlines the perspectives of photosynthesis research at the crop plant level, especially the application of photosynthetic methods for a high-throughput crop phenotyping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aien A, Khetarpal S, Pal M (2011) Photosynthetic characteristics of potato cultivars grown under high temperature. Am-Eurs J Agric Environ Sci 11:633–639

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Ra HSY, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol 8:695–709

    Article  Google Scholar 

  • Akhkha A, Boutraa T, Alhejely A (2011) The rates of photo-synthesis, chlorophyll content, dark respiration, proline and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. Internat J Agric Biol 13:215–221

    CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Chinnusamy V (2012) Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32

    Google Scholar 

  • Alonso L, Gomez-Chova L, Vila-Frances J, Amoros-Lopez J, Guanter L, Calpe J, Moreno J (2008) Improved Fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geosci Remote Sens Lett 5:620–624

    Article  Google Scholar 

  • Amirjani M (2012) Estimation of wheat responses to “high” heat stress. Amer-Euro J Sustain Agri 6:222–233

    Google Scholar 

  • Ananyev G, Kolber ZS, Klimov D, Falkowski PG, Berry JA, Rascher U, Martin R, Osmond CB (2005) Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Glob Change Biol 11:1195–1206

    Article  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Anjum SA, Ehsanullah LX, Wang L, Farrukh M, Saleem CJH (2013) Exogenous benzoic acid (BZA) treatment can induce drought tolerance in soybean plants by improving gas-exchange and chlorophyll contents. Austral J Crop Sci 7:555

    CAS  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Serret MD, Edmeades GO (2012) Phenotyping maize for adaptation to drought. Front Physiol 3:305

    Article  PubMed  PubMed Central  Google Scholar 

  • Arntz M, Delph L (2001) Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127:455–467

    Article  Google Scholar 

  • Arntz AM, DeLucia EH, Jordan N (2000) From fluorescence to fitness: variation in photosynthetic rate affects fecundity and survivorship. Ecology 81:2567–2576

    Article  Google Scholar 

  • Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W (2013) Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237:771–781

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2006) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Atkin OK, Evans JR, Siebke K (1998) Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. Aust J Plant Physiol 24:437–443

    Article  Google Scholar 

  • Austin R, Bingham J, Blackwell R, Evans L, Ford M, Morgan C, Taylor M (1980) Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J Agr Sci 94:675–689

    Article  Google Scholar 

  • Austin RB, Ford MA, Morgan CL (1989) Genetic improvement in the yield of winter wheat: a further evaluation. J Agr Sci 112:295–301

    Google Scholar 

  • Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ, Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46:1269–1276

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 403:1607–21

    Article  CAS  Google Scholar 

  • Ballantyne AP, Miller JB, Tans PP, White JWC (2011) Testing biosphere models with atmospheric observations: novel applications of isotopes in CO2. Biogeosciences 8:3093–3106

    Article  CAS  Google Scholar 

  • Barnaby JY, Kim M, Bauchan G, Bunce J, Reddy V, Sicher RC (2013) Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PloS One 8:77145

    Article  CAS  Google Scholar 

  • Beadle CL, Long SP (1985) Photosynthesis – is it limiting to biomass production? Biomass 8:119–168

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bencze S, Bamberger Z, Janda T, Balla K, Bedő Z, Veisz O (2011) Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities. Centr Europ J Biol 6:376–387

    CAS  Google Scholar 

  • Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis ‘ESPACE-wheat’ results. Eur J Agron 10:185–195

    Article  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance: implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    Article  CAS  Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crop Res 86:131–146

    Article  Google Scholar 

  • Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electronacceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta 635:542–55

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M (2013) PS II fluorescence techniques for measurements of drought and high temperature stress signal in crop plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular Stress Physiology of Plants. Springer, Dordrecht, pp 87–131

    Chapter  Google Scholar 

  • Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosyn-thetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II ther-mostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Repkova J (2013) Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. Photosynthesis Research for Food, Fuel and the Future. Springer, Berlin Heidelberg, pp 510–513

    Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev SI (2014) Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol Biochem 81:74–83

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifically affects the photoprotective responses of chlorophyll b-defficient wheat mutant lines. Photosynth Res (in press). doi:10.1007/s11120-016-0249-7

  • Brien CJ, Berger B, Rabie H, Tester M (2013) Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    Article  CAS  Google Scholar 

  • Bunce JA (1981) Comparative responses of leaf conductance to humidity in single attached leaves. J Exp Bot 32:629–634

    Article  Google Scholar 

  • Bürling K, Cerovic ZG, Cornic G, Ducruet JM, Noga G, Hunsche M (2013) Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environ Exp Bot 89:51–59

    Article  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL (2012) High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Calatayud A, Roca D, Martínez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564–573

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dell'Amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low CO2 to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt stressed olive saplings. Plant Cell Environ 26:585–594

    Article  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plantarum 144:277–288

    Article  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, van der Straeten D (2007) Display Settings: Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–84

    Article  CAS  PubMed  Google Scholar 

  • Chandrakala JU, Chaturvedi AK, Ramesh KV, Rai P, Khetarpal S, Pal M (2013) Acclimation response of signalling molecules for high temperature stress on photosynthetic characteristics in rice genotypes. Indian J Plant Phys 18:142–150

    Article  Google Scholar 

  • Chapuis R, Delluc C, Debeuf R, Tardieu F, Welcker C (2012) Resiliences to water deficit in a phenotyping platform and in the field: How related are they in maize? Eur J Agron 42:59–67

    Article  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Annals Bot 89:907–916

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen LS, Cheng L (2009) Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh) leaves than in fruit peel. Photosynthetica 47:112–120

    Article  CAS  Google Scholar 

  • Ciampitti IA, Zhang H, Friedemann P, Vyn TJ (2012) Potential physiological frameworks for mid-season field phenotyping of final plant nitrogen uptake, nitrogen use efficiency, and grain yield in maize. Crop Sci 52:2728–2742

    Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Collatz GJ, Ribascarbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Article  Google Scholar 

  • Cornic G, Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during water stress. Planta 183:178–184

    Article  CAS  PubMed  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem 2 activity during a mild drought. Annals Bot 89:887–894

    Article  CAS  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the Environment. Kluwer Academic Publishers, Dordrecht, pp 347–366

    Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cseri A, Sass L, Torjek O, Pauk J, Vass I, Dudits D (2013) Monitoring drought responses of barley genotypes with semi-robotic phenotyping platform and association analysis between recorded traits and allelic variants of some stress genes. Austral J Crop Sci 7:1560–1570

    Google Scholar 

  • Curran PJ (1989) Remote-sensing of foliar chemistry. Remote Sens Environ 30:271–278

    Article  Google Scholar 

  • Damm A, Elbers J, Erler E, Gioli B, Hamdi K, Hutjes R, Kosvancova M, Meroni M, Miglietta F, Moersch A, Moreno J, Schickling A, Sonnenschein R, Udelhoven T, van der Linden S, Hostert P, Rascher U (2010) Remote sensing of sun induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob Change Biol 16:171–186

    Article  Google Scholar 

  • Datko M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th International congress on photo-synthesis. Springer, Dordrecht, pp 1523–1527

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plant in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • de Las Rivas J, Barber J (1997) Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:8897–8903

    Article  Google Scholar 

  • de Souza TC, Magalhães PC, de Castro EM, de Albuquerque PEP, Marabesi MA (2013) The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiol Plant 35:515–527

    Article  CAS  Google Scholar 

  • Deák C, Jäger K, Fábián A, Nagy V, Albert Z, Miskó A, Barnabás B, Papp I (2011) Investigation of physiological responses and leaf morphological traits of wheat genotypes with contrasting drought stress tolerance. Acta Biol Szeged 55:69–71

    Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Bioch 53:6–18

    Article  CAS  Google Scholar 

  • Demetriades-Shah TH, Fuchs M, Kanemasu ET, Flitcroft I (1992) A note of caution concerning the relationship between cumulated intercepted solar radiation and crop growth. Agr Forest Meteorol 58:193–207

    Article  Google Scholar 

  • Dhondt S, Wuyts N, Inzé D (2013) Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci 18:428–439

    Article  CAS  PubMed  Google Scholar 

  • Dias AS, Semedo J, Ramalho JC, Lidon FC (2011) Bread and durum wheat under heat stress: a comparative study on the photosynthetic performance. J Agron Crop Sci 197:50–56

    Article  Google Scholar 

  • Dignat G, Welcker C, Sawkins M, Ribaut J M, Tardieu F (2013) The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell Environ 36:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Ditmarova L, Kurjak D, Palmroth S, Kmet J, Strelcova K (2010) Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiol 30:205–213

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71:215–223

    Article  CAS  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PloS One 8:60325

    Article  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler M, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Ann Rev Plant Physiol 48:609–639

    Article  CAS  Google Scholar 

  • Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Duysens LMN, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed) Studies on Microalgae and Photosynthetic Bacteria, University of Tokyo Press, Tokyo

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenson JL, Amundson RG (1982) Delayed light imaging for the early detection of plant stress. Science 215:1104–1106

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Godard G, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica and Castanea sativa Mill.). Plant Cell Environ 18:43–51

    Article  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations to photosynthesis under water stress in field-grown grapevine. Aust J Plant Physiol 26:421–433

    Article  Google Scholar 

  • Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R (2011) Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress. Plant Physiol Bioch 49:235–243.

    Article  CAS  Google Scholar 

  • Evans LT (1993) Crop Evolution, Adaptation and Yield. Cambridge University Press, Cambridge, 500 p.

    Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–741

    Article  Google Scholar 

  • Fábián A, Jäger K, Barnabás B (2013) Developmental stage dependency of the effect of drought stress on photosynthesis in winter wheat (Triticum aestivum L.) varieties. Acta Agron Hung 61:13–21

    Article  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (1996) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, Volume 5. Kluwer, Dordrecht, pp 367–385

    Chapter  Google Scholar 

  • Fan X, Huang G, Zhang L, Deng T, Li Y (2013) Adaptability and recovery capability of two maize inbred-line foundation genotypes, following treatment with progressive water-deficit stress and stress recovery. Agr Sci Finland 4:389–398

    Google Scholar 

  • Fang S, Su H, Liu W, Tan K, Ren S (2013) Infrared warming reduced winter wheat yields and some physiological parameters, which were mitigated by irrigation and worsened by delayed sowing. PloS One 8:67518

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Basra SMA (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faver KL, Gerik TJ, Thaxton PM, El-Zik KM (1996) Late season water stress in cotton: II. Leaf gas exchange and assimilation capacity. Crop Sci 36:922–928

    Article  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci E (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase activasemediated activation of Rubisco. Plant Physiol 116:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Jiang N, Huang C, Fang W, Yang W, Chen G, Liu Q (2013) A hyperspectral imaging system for an accurate prediction of the above-ground biomass of individual rice plants. Rev Sci Instrum 84:095107

    Article  PubMed  CAS  Google Scholar 

  • Fiorani F, Schurr U (2013) Future Scenarios for Plant Phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Rascher U, Jahnke S, Schurr U (2012) Imaging plants dynamics in heterogenic environments. Curr Opin Biotech 23:227–235

    Article  CAS  PubMed  Google Scholar 

  • Fischer KS, Fukai S, Kumar A, Leung H, Jongdee B (2012) Field phenotyping strategies and breeding for adaptation of rice to drought. Front Physiol 3:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Flagella Z, Campanile RG, Stoppelli MC, de Caro A, di Fonzo N (1998) Drought tolerance of photosynthetic electron transport under CO2 enriched and normal air in cereal species. Physiol Plantarum 104:753–759

    Article  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48

    Article  Google Scholar 

  • Flexas J, Briantais JM, Cerovic Z, Medrano H, Moya I (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sens Environ 73:283–297

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espej A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flood PJ, Harbinson J, Aarts MG (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: DeEll JR, Toivonen PMA (eds) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Kluwer Academic Publishers, Dordrecht, pp 125–150

    Chapter  Google Scholar 

  • Frolec J, Řebíček J, Lazár D, Nauš J (2010) Impact of two different types of heat stress on chloroplast movement and fluorescence signal of tobacco leaves. Plant Cell Rep 29:705–714

    Article  CAS  PubMed  Google Scholar 

  • Froux F, Ducrey M, Epron D, Dreyer E (2004) Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Ann For Sci 61:235–241

    Article  CAS  Google Scholar 

  • Fuad-Hassan A, Tardieu F, Turc O (2008) Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ 31:1349–1360

    Article  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gautam A, Agrawal D, SaiPrasad SV, Jajoo A (2014) A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiol Mol Biol Plants, 20: 533–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genty B, Briantais JM, da Silva JB. (1987) Effects of drought on primary photosynthet-ic processes of cotton leaves. Plant Physiol 83:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Ghannoum O, von Caemmerer S, Conroy JP (2001) Plant water use efficiency of 17 Australian NAD-ME and NADP-ME C-4 grasses at ambient and elevated CO2 partial pressure. Aust J Plant Physiol 28:1207–1217

    CAS  Google Scholar 

  • Giannakoula AE, Ilias IF (2013) The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mil.). Arch Biol Sci 65:611–620

    Article  Google Scholar 

  • Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J Exp Bot 62:2875–2887

    Article  CAS  PubMed  Google Scholar 

  • Gillon JS, Yakir D (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol 123:201–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardi MT, Cona B, Geiken B, Kucera T, Masojidek J, Matoo AK (1996) Longterm drought stress induces structural and functional reorganization of photosystem II. Planta 199:118–125

    Article  Google Scholar 

  • Gollan Y, Passioura JB, Munns R. (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 48:575–579

    Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Cruz J, Pastenes C (2012) Water-stress-induced thermotolerance of photosynthesis in bean (Phaseolus vulgaris L.) plants: The possible involvement of lipid composition and xanthophyll cycle pigments. Environ Exp Bot 77:127–140

    Article  CAS  Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci Hortic 138:24–35

    Article  CAS  Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56–63

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Tardieu F (2009) Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant Cell Environ 32:1175–1184

    Article  PubMed  Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin GH, Schuster W, Seemann JR, Tissue DT, Turnbull MH, Whitehead D (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98:2473–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths H, Helliker BR (2013) Mesophyll conductance: internal insights of leaf carbon exchange. Plant Cell Environ 36:733–735

    Article  CAS  PubMed  Google Scholar 

  • Guarini JM, Moritz C (2009) Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during Rapid Light Curve experiments. Photosynthetica 47:206–214

    Article  Google Scholar 

  • Guisse B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Arch Sci Geneve 48:147–160

    CAS  Google Scholar 

  • Hackl H, Mistele B, Hu Y, Schmidhalter U (2013) Spectral assessments of wheat plants grown in pots and containers under saline conditions. Funct Plant Biol 40:409–424

    Article  Google Scholar 

  • Harbinson J, Hedley CL (1989) The kinetic of P700 reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell Environ 12:357–369

    Article  CAS  Google Scholar 

  • Harbinson J, Prinzenberg AE, Kruijer W, Aarts MG (2012) High throughput with chlorophyll fluorescence imaging and its use in crop improvement. Curr Opin Biotech 23:221–6

    Article  CAS  PubMed  Google Scholar 

  • Harrison EP, Olcer H, Lloyd JC, Long SP, Raines CA (2001) Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J Exp Bot 52:1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33

    Article  CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of photosystem I to heat stress. Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47:85–97

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333

    Article  CAS  Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1990) In vivo photoregulation of photochemical and non-photochemical deactivation of photosystem II in intact plant leaves. Plant Physiol Bio 28:735–746

    CAS  Google Scholar 

  • Herppich WB, Peckmann K (1997) Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia to short-term drought and rewatering. J Plant Physiol 150:467–474

    Article  CAS  Google Scholar 

  • Herzog H, Chai-Arree W (2012) Gas exchange of five warm-season grain legumes and their susceptibility to heat stress. J Agron Crop Sci 198:466–474

    Article  CAS  Google Scholar 

  • Hewson I, O’Neil JM, Dennison WC (2001) Virus-like particles associated with Lyngbya ma-juscula (Cyanophyta; Oscillatoriacea) bloom decline in Moreton Bay, Australia. Aquat Microb Ecol 25:207–213

    Article  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Li R, Jia Z, Han Q (2013) Rotational tillage improves photosynthesis of winter wheat during reproductive growth stages in a semiarid region. Agron J 105:215–221

    Article  Google Scholar 

  • Hozain M, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS (2012) Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol 169:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Wang Z, Huang B (2010) Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiol Plantarum 139:93–106

    Article  CAS  Google Scholar 

  • Hubbart S, Peng S, Horton P, Chen Y, Murchie EH (2007) Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J Exp Bot 58:3429–3438

    Article  CAS  PubMed  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets U (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    Article  PubMed  CAS  Google Scholar 

  • Ierna A (2007) Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica 45:568–575

    Article  CAS  Google Scholar 

  • Ishizaki T, Maruyama K, Obara M, Fukutani A, Yamaguchi-Shinozaki K, Ito Y, Kumashiro T (2013) Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breeding 31:255–264

    Article  CAS  Google Scholar 

  • Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259

    Article  CAS  Google Scholar 

  • Jedmowski C, Ashoub A, Brüggemann W (2013) Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiol Plant 35:345–354

    Article  Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  Google Scholar 

  • Kalaji HM, Bosa K, Koscielniak J, Hossain Z (2011) Chlorophyll a fluorescence—a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). OMICS 15:95–934

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI (2014a) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014b) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Bioch 81:16–25

    Article  CAS  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15:276–281

    Article  CAS  PubMed  Google Scholar 

  • Kalyar T, Rauf S, Teixeira da Silva JA, Iqbal Z (2013) Variation in leaf orientation and its related traits in sunflower (Helianthus annuus L.) breeding populations under high temperature. Field Crop Res 150:91–98

    Article  Google Scholar 

  • Kamoshita A, Babu R, Boopathi N, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted for rainfed environments. Field Crop Res 109:1–23

    Article  Google Scholar 

  • Kaňa R, Kotabova E, Prášil O (2008) Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO2 assimilation in preheated barley leaves. Physiol Plantarum 133:794–806

    Article  CAS  Google Scholar 

  • Karim M, Zhang YQ, Zhao RR, Chen XP, Zhang FS, Zou CQ (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J Plant Nutr Soil Sci 175:142–151

    Article  CAS  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Staebler N, Schoenfeld B, Kreuzaler F, Peterhaenzel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Kimball BA (1983) Carbon-dioxide and agricultural yield – an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Kirschbaum MU (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Kolber Z, Klimov D, Ananyev G, Rascher U, Berry JA, Osmond CB (2005) Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of PSII in terrestrial vegetation. Photosynth Res 84:121–129

    Article  CAS  PubMed  Google Scholar 

  • Kolukisaoglu Ü, Thurow K (2010) Future and frontiers of automated screening in plant sciences. Plant Sci 178:476–484

    Article  CAS  Google Scholar 

  • Kovačević J, Kovačević M, Cesar V, Drezner G, Lalić A, Lepeduš H, Kovačević V (2013) Photosynthetic efficiency and quantitative reaction of bread winter wheat to mild short-term drought conditions. Turk J Agric Forest 37:385–393

    Google Scholar 

  • Kubler JE, Raven J (1996) Nonequilibrium rates of photosynthesis and respiration under dynamic light supply. J Phycol 32:963–969

    Article  Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agric 10:34–44

    Article  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PloS One 8:64190

    Article  CAS  Google Scholar 

  • Lal A, Ku MSB, Edwards GE (1996) Analysis of inhibition of photosynthesis due to water-stress in the C3 species Hordeum vulgare and Vicia faba – electron-transport, CO2 fixation and carboxylation capacity. Photosynth Res 49:57–69

    Article  CAS  PubMed  Google Scholar 

  • Lauer MJ, Boyer JS (1992) Internal CO2 measured directly in leaves. Plant Physiol 98:1310–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate Carboxylase/Oxygenase. Plant Physiol 120:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: Stomatal metabolism and the role of ATP. Annals Hort 89:871–885

    CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Cheng L, Gao H, Jiang C, Peng T (2009) Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol 166:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shen X, Li J, Eneji AE, Li Z, Tian X, Duan L (2010) Coronatine alleviates water deficiency stress on winter wheat seedlings. J Integr Plant Biol 52:616–625

    CAS  PubMed  Google Scholar 

  • Li D, Liu H, Qiao Y, Wang Y, Cai Z, Dong B, Liu M (2013) Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max L. Merr.) under drought stress. Agr Water Manage 129:105–112

    Article  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus: changes in pigment composition, chlorophyll fluorescence parameters and photo-synthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 713–736

    Chapter  Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320

    Article  Google Scholar 

  • Lichtenthaler HK, Rinderle U (1988) Role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Cr Rev Anal Chem 19:29–85

    Article  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005a) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    Article  CAS  Google Scholar 

  • Liu LY, Zhang YJ, Wang JH, Zhao CJ (2005) Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle. IEEE Trans Geosci Remote Sensing 43:827–832

    Article  Google Scholar 

  • Long SP (1993) The significance of light-limited photosynthesis to crop canopy carbon gain and productivity – a theoretical analysis. In Abrol YP, Mohanty P, Govindjee (eds) Photosynthesis: Photoreactions to Plant Productivity. Oxford & IBH Publishing, New Delhi, pp 547–560

    Google Scholar 

  • Long SP (1998) Rubisco, the key to improved crop production for a world population of more than eight billion people? In: Waterlow JC, Armstron DG, Fowdenand L, Riley R (eds) Feeding a World Population of More Than Eight Billion People – A Challenge to Science. Oxford University Press, New York, pp 124–136

    Google Scholar 

  • Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot 47:1629–1642

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face their future. Annu Rev Plant Phys 55:591–628

    CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos Trans R Soc Lond B Biol Sci 360:2011–2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can Improvement in Photosynthesis Increase Crop Yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenovsky Z, Mishra KB, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60:2987–3004

    Article  CAS  PubMed  Google Scholar 

  • Markelz RC, Strellner RS, Leakey AD (2011) Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J Exp Bot 62:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Maroco JP, Pereira JS, Chaves MM (1997) Stomatal responses of leaf-to-air vapour pressure deficit in Sahelian species. Aust J Plant Physiol 24:381–387

    Article  Google Scholar 

  • Maroco JP, Rodriges ML, Lopes C, Chaves MM (2002) Limitation to leaf photosynthesis in grapevine under drought – metabolic and modeling approaches. Funct Plant Biol 29:1–9

    Article  Google Scholar 

  • Martin B, Ruiz-Torres NA (1992) Effect of water-deficit stress on photosynthesis, its components and components limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol 100:733–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Bioch 46:189–195

    Article  CAS  Google Scholar 

  • Masuka B, Araus JL, Das B, Sonder K, Cairns JE (2012) Phenotyping for Abiotic Stress Tolerance in Maize. J Integr Plant Biol 54:238–249

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011a) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochym Biophys Acta 1807:22–29

    CAS  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011b) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengistu A, Bond J, Mian R, Nelson R, Shannon G, Wrather A (2011) Identification of soybean accessions resistant to by field screening, molecular markers, and phenotyping. Crop Sci 51:1101–1109

    Article  Google Scholar 

  • Meroni M, Colombo R (2006) Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens Environ 103:438–448

    Article  Google Scholar 

  • Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens Environ 113:2037–2051

    Article  Google Scholar 

  • Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J Exp Bot 64:769–786

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RAC, Black CR, Burkart S, Burke JI, Donnelly A, De Temmmerman L, Fangmeier A, Mulholland BJ, Theobald JC, van Oijen M (1999) Photosynthetic responses in spring wheat grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’. Eur J Agron 10:205–214

    Article  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Monteith JL (1994) Validity of the correlation between intercepted radiation and biomass. Agr Forest Meteorol 68:213–220

    Article  Google Scholar 

  • Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B 281:277–294

    Article  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  • Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Ounis A (2004) A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91:186–197

    Article  Google Scholar 

  • Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458

    Article  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  CAS  PubMed  Google Scholar 

  • Nedbal L, Whitmarsh J (2004) Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 389–407

    Chapter  Google Scholar 

  • Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W, Sticklen M (2013) Transgene pyramiding of the HVA1 and mtlD in T3 maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron 2013:10

    Article  CAS  Google Scholar 

  • Niinemets U, Diaz-Espejo A, Flexas J, Galmes J, Warren C (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282

    Article  CAS  PubMed  Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    PubMed  Google Scholar 

  • Olšovská K, Živčák M, Hunková E, Dreveňáková P (2013) Assessment of the photosynthesis-related traits and high temperature resistance in tetraploid wheat (Triticum L.) genotypes. J Centr Europ Agric 14:289–302

    Article  Google Scholar 

  • Omasa K, Takayama K (2003) Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Plant Cell Physiol 44:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Omasa K, Shimazaki KI, Aiga I, Larcher W, Onoe M (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol 84:748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oukarroum G, Schansker, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plantarum 137:188–199

    Article  CAS  Google Scholar 

  • Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Oukarroum A, El Madidi S, Strasser RJ (2012) Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): A chlorophyll a fluorescence study. Plant Biosyst 146:1037–1043

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Parry M, Andraloje PJ, Khan S, Lea PJ, Keys A (2002) Rubisco activity: effect of drought stress. Annals of Bot 89:833–639

    Article  CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Parry MAJ, Madgwick PJ, Carvalho JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agr Sci 145:31–43

    Article  CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Reines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    Article  Google Scholar 

  • Peet MM, Kramer PJ (1980) Effects of decreasing source-sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant Cell Environ 3:201–206

    Google Scholar 

  • Pereyra-Irujo GA, Gasco ED, Peirone LS, Aguirrezábal LA (2012) GlyPh: a low-cost platform for phenotyping plant growth and water use. Funct Plant Biol 39:905–913

    Article  Google Scholar 

  • Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieruschka R, Poorter H (2012) Phenotyping plants: genes, phenes and machines. Funct Plant Biol 39:813–820

    Article  Google Scholar 

  • Pieruschka R, Klimov D, Kolber ZS, Berry JA (2010) Monitoring of cold and light stress impact on photosynthesis by using the laser induced fluorescence transient (LIFT) approach. Funct Plant Biol 37:395–402

    Article  Google Scholar 

  • Pinelli P, Loreto F (2003) 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. J Exp Bot 54:1761–1769

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Niinemets Ü, Walter A, Fiorani F, Schurr U (2010) A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot 61:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG (2013) Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. PloS One 8:65816

    Article  CAS  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Siebke K, Anderson JM, Badger MR (1998) Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust J Plant Physiol 25:445–452

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753–768

    Article  CAS  PubMed  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2012) Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot 75:107–113

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress. Biol Trace Elem Res 156:1–6

    Article  CAS  Google Scholar 

  • Quick WP, Horton P (1984) Studies on the induction of chlorophyll fuorescence in barley protoplasts. II. Resolution of fluorescence quenching by redox state and the transthylakoid pH gradient. Philos Trans R Soc Lond B Biol Sci 220:371–382

    Article  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid Light Curve: A powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC (2014) Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biology 16:133–146

    Article  CAS  PubMed  Google Scholar 

  • Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt-and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19

    Article  CAS  Google Scholar 

  • Rascher U, Nedbal L (2006) Dynamics of photosynthesis in fluctuating light – commentary. Curr Opin Plant Biol 9:671–678

    Article  CAS  PubMed  Google Scholar 

  • Rascher U, Pieruschka R (2008) Spatio-temporal variations of photosynthesis – the potential of optical remote sensing to better understand and scale light use efficiency and stresses of plant ecosystems. Precis Agric 9:355–366

    Google Scholar 

  • Rascher U, Nichol CJ, Small C, Hendricks L (2007) Monitoring spatiotemporal dynamics of photosynthesis with a portable hyperspectral imaging system. Photogramm Eng Rem S 73:45–56

    Article  Google Scholar 

  • Rascher U, Agati G, Alonso L, Cecchi G, Champagne S, Colombo R, Damm A, Daumard F, de Miguel E, Fernandez G, Franch B, Franke J, Gerbig C, Gioli B, Gómez JA, Goulas Y, Guanter L, Gutiérrez-de-la-Cámara Ó, Hamdi K, Hostert P, Jiménez M, Kosvancova M, Lognoli D, Meroni M, Miglietta F, Moersch A, Moreno J, Moya I, Neininger B, Okujeni A, Ounis A, Palombi L, Raimondi V, Schickling A, Sobrino JA, Stellmes M, Toci G, Toscano P, Udelhoven T, van der Linden S, Zaldei A (2009) CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences 6:1181–1198

    Article  CAS  Google Scholar 

  • Rascher U, Biskup B, Leakey ADB, McGrath JM, Ainsworth EA (2010) Altered physiological function, not structure, drives increased radiation use efficiency of soybean grown at elevated CO2. Photosynth Res 105:15–25

    Article  CAS  PubMed  Google Scholar 

  • Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ et al (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol 38:968–983

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Bennet D, Barrett-Lennard G, Mayer JE (2012) A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct Plant Biol 40:1–13

    Article  Google Scholar 

  • Redillas MC, Strasser RJ, Jeong JS, Kim YS, Kim JK (2011) The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnol Rep 5:169–175

    Article  Google Scholar 

  • Repkova J, Brestic M, Zivcak M (2008) Bioindication of barley leaves vulnerability in conditions of water deficit. Cereal Res Commun 36:1747–1750

    CAS  Google Scholar 

  • Restrepo-Diaz H, Garces-Varon G (2013) Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases. J Stress Physiol Biochem 9:318–325

    Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Article  Google Scholar 

  • Reynolds M, Manes Y, Izanloo A, Langridge P (2009) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Article  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MA (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RV, Santos MG, Machado EC, Oliveira RF (2008) Photochemical heat-shock response in common bean leaves as affected by previous water deficit. Russ J Plant Physiol 55:350–358

    Article  CAS  Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AT, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Article  Google Scholar 

  • Robakowski P, Montpied P, Dreyer E (2002) Temperature response of photosynthesis of silver fir (Abies alba Mill.) seedlings. Ann For Sci 59:159–166

    Article  Google Scholar 

  • Rohacek K, Soukupova J, Bartak M (2008) Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In: Benoit Schoefs (ed) Plant Cell Compartments – Selected Topics, Trivandrum, India

    Google Scholar 

  • Rolfe SA, Scholes JD (1995) Quantitative imaging of chlorophyll fluorescence. New Phytol 131:69–79

    Article  Google Scholar 

  • Roohi E, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Siosemardeh A (2013) Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. J Agr Sci Tech 15:215–225

    Google Scholar 

  • Rosema A, Snel JFH, Zahn H, Buurmeijer WF, van Hove LWA (1998) The relation between laser-induced chlorophyll fluorescence and photosynthesis. Remote Sens Environ 65:143–154

    Article  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PS I during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Sadras VO, Rebetzke GJ, Edmeades GO (2013) The phenotype and the components of phenotypic variance of crop traits. Field Crop Res 154:255–259

    Article  Google Scholar 

  • Saint Pierre C, Crossa JL, Bonnett D, Yamaguchi-Shinozaki K, Reynolds MP (2012) Phenotyping transgenic wheat for drought resistance. J Exp Bot 63:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the acti-vation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plant 120:179–186

    Article  CAS  Google Scholar 

  • Santos MG, Ribeiro RV, Machado EC, Pimentel C (2009) Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol Plantarum 53:229–236

    Article  CAS  Google Scholar 

  • Sazanov LA, Burrows PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429:115–118

    Article  CAS  PubMed  Google Scholar 

  • Scafaro AP, Yamori W, Carmo-Silva AE, Salvucci ME, von Caemmerer S, Atwell BJ (2012) Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis). Physiologia Plant 146:99–109

    Article  CAS  Google Scholar 

  • Schoenenberger N, Felber F, Savova-Bianchi D, Guadagnuolo R (2005) Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host× Triticum aestivum L. hybrids. Theor Appl Genet 111:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Gademann R, Ralph PJ, Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38:945–951

    Article  CAS  Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352

    Article  CAS  PubMed  Google Scholar 

  • Seddon S, Cheshire AC (2001) Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and dessication using chlorophyll fluorescence. Mar Ecol Progr Ser 220: 119–130

    Article  CAS  Google Scholar 

  • Serbin SP, Dillaway DN, Kruger EL, Townsend PA (2012) Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J Exp Bot 63:489–502

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, McNally KL, Slamet-Loedin I, Kohli A, Haefele SM, Atlin G, Kumar A (2011) Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Prod Sci 14:1–14

    Article  Google Scholar 

  • Shanmugam S, Kjær KH, Ottosen CO, Rosenqvist E, Kumari Sharma D, Wollenweber B (2013) The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. J Agron Crop Sci 199:340–350

    Article  CAS  Google Scholar 

  • Sharkey TD, Seeman JR. (1989) Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol 89:1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C(3) leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Sharkova VE (2001) The effect of heat shock on the capacity of wheat plants to restore their photosynthetic electron transport after photoinhibition or repeated heating. Russ J Plant Physiol 48:793–797

    Article  CAS  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2012) Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant Biol 39:936–947

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Sheehy JE, Ferrer AB, Mitchell PL, Elmido-Mabilangan A, Pablico P, Dionora MJA (2007) How the rice crop works and why it needs a new engine. Charting new pathways to C. International Rice Institute 4:3–26

    Google Scholar 

  • Shefazadeh MK, Mohammadi M, Karimizadeh R. (2012) Genotypic difference for heat tolerance traits under real field conditions. J Food Agric Envir 10:484–487

    Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: Genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ferreira-Silva SL, Fontenele ADV, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129

    Article  CAS  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis. J Exp Bot 59:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Skillman JB, Garcia M, Virgo A, Winter K (2005) Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways. Am J Bot 92:1811–1819

    Article  CAS  PubMed  Google Scholar 

  • Skillman JB, Griffin KL, Earll S, Kusama M (2011) Photosynthetic productivity: can plants do better? In: Moreno-Piraján JC (ed) Thermodynamics – Systems in Equilibrium and Non-Equilibrium

    Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plantarum 137:125–138

    Article  CAS  Google Scholar 

  • Song L, Yue L, Zhao H, Hou M (2013a) Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta Physiol Plant 35:3323–3333

    Article  CAS  Google Scholar 

  • Song Q, Zhang G, Zhu XG (2013b) Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2: atheoretical study using a mechanistic model of canopy photosynthesis. Funct Plant Biol 40:108–124

    Article  CAS  Google Scholar 

  • Srivastava B, Guisse H, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106

    Article  CAS  Google Scholar 

  • Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Sci Hortic-Amsterdam 128:1–6

    Article  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem Photobio B 104:236–257

    Article  CAS  Google Scholar 

  • Strasser RJ, Govindjee (1992) On the OJIP fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht, Volume II, pp 29–32

    Google Scholar 

  • Strasser RJ, Govindjee (1991) The Fo and the OJIP fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of Chloroplast Biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: The JIP-test. In: Mathis P (ed) Photosynthesis: from Light to Biosphere. Kluwer Academic Publishers, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Kluwer Academic Publishers, The Netherlands, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimili-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydratation of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CHL (2003) Acquired tolerance to environmental extrems. Trends Pl Sci 8:179–187

    Article  CAS  Google Scholar 

  • Surridge C (2002) The rice squad. Nature 416:576–578

    Article  CAS  PubMed  Google Scholar 

  • Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, Kanai S, Lightfoot DA, Mohapatra PK, Fujita K (2010) High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Bioch 48:124–130

    Article  CAS  Google Scholar 

  • Tan W, Brestič M, Olšovská K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factors and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu X (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Chai-Arree W, Kaveeta L (2012) Increasing photosynthetic efficiency and pollen germination with 24-Epibrassinolide in rice (Oryza sativa L.) under heat stress. Thai J Bot 4:135–143

    Google Scholar 

  • Tian Y, Chen J, Chen C, Deng A, Song Z, Zheng C, Hoogmoed W, Zhang W (2012) Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crops Res 134:193–199

    Article  Google Scholar 

  • Toth SZ, Schansker G, Kissimon J, Kovacs L, Garab G, Strasser RJ (2005) Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol 162:181–194

    Article  CAS  PubMed  Google Scholar 

  • Toth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Ushakova SA, Tikhomirov AA, Shikhov VN, Gros JB, Golovko TK, Dal’ke IV, Zakhozhii IG (2013) Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress. Adv Space Res 51:2075–2083

    Article  CAS  Google Scholar 

  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534

    Article  Google Scholar 

  • van Gorkom HJ (1986) Fluorescence measurements in the study of photosystem II electron transport. In: Govindjee, Amesz J, Fork DC (eds) Light Emission by Plants and Bacteria. Academic Press, New York, pp 267–289

    Chapter  Google Scholar 

  • Vassileva V, Demirevska K, Simova-Stoilova L, Petrova T, Tsenov N, Feller U (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. J Agron Crop Sci 198:104–117

    Article  Google Scholar 

  • Vollmann J, Walter H, Sato T, Schweiger P (2011) Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput Electron Agr 75:190–195

    Article  Google Scholar 

  • von Caemmerer S (2003) C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Environ 26:1191–1197

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang B, Li Z, Eneji AE, Tian X, Zhai Z, Li J, Duan L (2008) Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress. Plant Production Sci 11:283–290

    Article  Google Scholar 

  • Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W (2011) Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cai J, Liu F, Dai T, Cao W, Wollenweber B, Jiang D (2014) Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol Bioch 76:185–192

    Article  CAS  Google Scholar 

  • Watanabe N, Evans JR, Chow WS (1994) Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aust J Plant Physiol 21:169–183

    Article  CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid Light Curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    Article  CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer Nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  CAS  PubMed  Google Scholar 

  • Wing SR, Patterson MR (1993) Effects of wave-induced light flecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 116:519–52

    Article  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Wójcik-Jagła M, Rapacz M, Tyrka M, Kościelniak J, Crissy K, Żmuda K (2013) Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet 126:3021–3034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    Article  CAS  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrosprective analysis of the A/C i curves from 109 species. J Exp Bot 44:907–920

    Article  CAS  Google Scholar 

  • Xu Z, Zhou G, Han G, Li Y (2011) Photosynthetic potential and its association with lipid peroxidation in response to high temperature at different leaf ages in maize. J Plant Growth Regul 30:41–50

    Article  CAS  Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39–48

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhang L, Xu G (2011) Effects of short-term high temperature on photosynthesis and photosystem II performance in sorghum. J Agron Crop Sci 197:400–408

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S, Zhang L, Xu G, Sun J (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agron Crop Sci 198:218–225

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Shao C, Zhao S, Brestič M (2013a) Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PloS One 8:62100

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S (2013b) Characterization of photosynthetic electron transport chain in bioenergy crop Jerusalem artichoke (Helianthus tuberosus L.) under heat stress for sustainable cultivation. Ind Crop Prod 50:809–815

    Article  CAS  Google Scholar 

  • Yasir TA, Min D, Chen X, Condon AG, Hu YG (2013) The association of carbon isotope discrimination (Δ) with gas exchange parameters and yield traits in Chinese bread wheat cultivars under two water regimes. Agr Water Manage 119:111–120

    Article  Google Scholar 

  • Ye L, Gao HY, Zou Q (2000) Responses of the antioxidant systems and xanthophyll cycle in Phaseolus vulgaris to the combined stress of high irradiance and high temperature. Photosynthetica 38:205–210

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol, special issue 187–206

    Google Scholar 

  • Yu C, Huang S, Hu X, Deng W, Xiong C, Ye C, Li Y, Peng B (2013) Changes in photosynthesis, chlorophyll fluorescence, and antioxidant enzymes of mulberry (Morus ssp.) in response to salinity and high-temperature stress. Biologia 68:404–413

    Article  CAS  Google Scholar 

  • Yu J, Yang Z, Jespersen D, Huang B (2014) Photosynthesis and protein metabolism associated with elevated CO2 mitigation of heat stress damages in tall fescue. Environ Exp Bot 99:75–85

    Article  CAS  Google Scholar 

  • Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64:787–798

    Article  CAS  PubMed  Google Scholar 

  • Zegada-Lizarazu W, Monti A (2013) Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages. Physiol Plantarum 149:56–66

    Article  CAS  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51:341–349

    Article  CAS  Google Scholar 

  • Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  • Zivcak M (2006) Application of physiological reaction diversity in screening of wheat genotypes for drought and high temperature tolerance. Dissertation, Slovak University of Agriculture.

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska, K (2008a) Application of photosynthetic parameters in screening of wheat (Triticum aestivum L.) genotypes for imroved drought and high tem-perature tolerance. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th International congress on photosynthesis. Springer, Dordrecht, pp 1247–1250.

    Chapter  Google Scholar 

  • Zivcak M, Brestic M, Olsovska, K, Slamka P (2008b) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Olsovska, K (2008c) Physiological parameters useful in screening for improved tolerance to drought in winter wheat (Triticum aestivum L.). Cereal Res Commun 36:1943–1946

    Google Scholar 

  • Zivcak M, Brestic M, Olsovska, K (2009a) Application of chlorophyll fluorescence for screening wheat (Triticum aestivum L.) genotype susceptibility to drught and high temperature. Vagos 82:82–87

    Google Scholar 

  • Zivcak M, Repkova J, Olsovska K, Brestic M (2009b) Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res Commun 37:569–572

    Google Scholar 

  • Zivcak M, Olsovska K, Brestic M, Slabbert MM (2013) Critical temperature derived from the selected chlorophyll a fluorescence parameters of indigenous vegetable species of South Africa treated with high temperature. In: Lu C (ed) Photosynthesis: Research for Food, Fuel and Future–15th International Conference on Photosynthesis, Springer, Dordrecht, pp 628–632

    Chapter  Google Scholar 

  • Živčák M, Brestič M, Balátová Z, Dreveňáková P, Olšovská K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  PubMed  CAS  Google Scholar 

  • Živčák M, Olšovská K, Slamka P, Galambošová J, Rataj V, Shao HB, Brestič M (2014a) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    Google Scholar 

  • Živčák M, Olšovská K, Slamka P, Galambošová J, Rataj V, Shao HB, Kalaji HM, Brestič M (2014b) Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste-Agriculture 101:437−444

    Article  Google Scholar 

  • Zivcak M, Kalaji HM, Shao HB, Olsovska K, Brestic M (2014c) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B Biol 137:107–115

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Rogers WE, Siemann E (2007) Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Funct Ecol 21:721–730

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants APVV-15-0721 and the research project of the Scientific Grant Agency of Slovak Republic VEGA-1-0923-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Brestic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zivcak, M., Olsovska, K., Brestic, M. (2017). Photosynthetic Responses Under Harmful and Changing Environment: Practical Aspects in Crop Research. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_10

Download citation

Publish with us

Policies and ethics