Skip to main content

Premalignant and Pre-invasive Lesions of the Breast

  • Chapter
  • First Online:
Breast Cancer

Abstract

Premalignant and pre-invasive lesions of the breast belong to a complex and heterogeneous group of lesions and represent a matter of remarkable interest from both clinical and biological standpoints. These frequent noninvasive alterations are related with an increased probability of breast cancer development. What is more, these breast abnormalities show extremely variable risks of progression toward invasive forms of disease. Indeed, while there are many histologically defined premalignant lesions in the breast, only a subset of them constitute true neoplastic precursors that will progress to invasive cancer. Disappointingly, it is currently not conceivable to identify a priori, with absolute certainty, which of these precursors will progress and which not. Therefore, classifying risk indicators, precursors, and non-obligate precursors of invasive breast cancer, and ultimately define robust protocols for their clinical management, is a hot topic in the multidisciplinary approach to breast cancer patients, that involves pathologists, radiologists, surgeons, and oncologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Society AC (2015) Breast cancer facts & figures 2015–2016. American Cancer Society, Inc, Atlanta

    Google Scholar 

  2. Simpson JF (2009) Update on atypical epithelial hyperplasia and ductal carcinoma in situ. Pathology 41:36–39

    Article  PubMed  Google Scholar 

  3. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS (2010) Breast cancer precursors revisited: molecular features and progression pathways. Histopathology 57:171–192

    Article  PubMed  Google Scholar 

  4. Reis-Filho JS, Simpson PT, Gale T, Lakhani SR (2005) The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 201:713–725

    Article  PubMed  Google Scholar 

  5. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005) Molecular evolution of breast cancer. J Pathol 205:248–254

    Article  CAS  PubMed  Google Scholar 

  6. Hicks J, Krasnitz A, Lakshmi B et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wellings SR (1980) A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol Res Pract 166:515–535

    Article  CAS  PubMed  Google Scholar 

  8. Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    CAS  PubMed  Google Scholar 

  9. Lakhani SR, International Agency for Research on Cancer, World Health Organization (2012) Who classification of tumours of the breast, 4th edn. International Agency for Research on Cancer, Lyon, p 240

    Google Scholar 

  10. Wellings SR, Jentoft VL (1972) Organ cultures of normal, dysplastic, hyperplastic, and neoplastic human mammary tissues. J Natl Cancer Inst 49:329–338

    CAS  PubMed  Google Scholar 

  11. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  12. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  13. Natrajan R, Weigelt B, Mackay A et al (2010) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, her2 and luminal cancers. Breast Cancer Res Treat 121:575–589

    Article  CAS  PubMed  Google Scholar 

  14. Network CGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  15. Roylance R, Gorman P, Harris W et al (1999) Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 59:1433–1436

    CAS  PubMed  Google Scholar 

  16. Balleine RL, Webster LR, Davis S et al (2008) Molecular grading of ductal carcinoma in situ of the breast. Clin Cancer Res 14:8244–8252

    Article  CAS  PubMed  Google Scholar 

  17. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Fatah TM, Powe DG, Hodi Z, Lee AH, Reis-Filho JS, Ellis IO (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31:417–426

    Article  PubMed  Google Scholar 

  19. Abdel-Fatah TM, Powe DG, Hodi Z, Reis-Filho JS, Lee AH, Ellis IO (2008) Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol 32:513–523

    Article  PubMed  Google Scholar 

  20. Natrajan R, Lambros MB, Geyer FC et al (2009) Loss of 16q in high grade breast cancer is associated with estrogen receptor status: evidence for progression in tumors with a luminal phenotype? Genes Chromosomes Cancer 48:351–365

    Article  CAS  PubMed  Google Scholar 

  21. Geyer FC, Kushner YB, Lambros MB et al (2009) Microglandular adenosis or microglandular adenoma? A molecular genetic analysis of a case associated with atypia and invasive carcinoma. Histopathology 55:732–743

    Article  PubMed  Google Scholar 

  22. Shin SJ, Simpson PT, Da Silva L et al (2009) Molecular evidence for progression of microglandular adenosis (mga) to invasive carcinoma. Am J Surg Pathol 33:496–504

    Article  PubMed  Google Scholar 

  23. Geyer FC, Lacroix-Triki M, Colombo PE et al (2012) Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology 60:E115–E130

    Article  PubMed  Google Scholar 

  24. Guerini-Rocco E, Piscuoglio S, Ng CK et al (2016) Microglandular adenosis associated with triple-negative breast cancer is a neoplastic lesion of triple-negative phenotype harbouring tp53 somatic mutations. J Pathol 238:677–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polyak K (2008) Is breast tumor progression really linear? Clin Cancer Res 14:339–341

    Article  PubMed  Google Scholar 

  26. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151

    Article  CAS  PubMed  Google Scholar 

  27. Page DL, Dupont WD, Rogers LW, Rados MS (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55:2698–2708

    Article  CAS  PubMed  Google Scholar 

  28. London SJ, Connolly JL, Schnitt SJ, Colditz GA (1992) A prospective study of benign breast disease and the risk of breast cancer. JAMA 267:941–944

    Article  CAS  PubMed  Google Scholar 

  29. Hartmann LC, Sellers TA, Frost MH et al (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353:229–237

    Article  CAS  PubMed  Google Scholar 

  30. Hartmann LC, Radisky DC, Frost MH et al (2014) Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev Res (Phila) 7:211–217

    Article  CAS  Google Scholar 

  31. Fitzgibbons PL, Henson DE, Hutter RV (1998) Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer committee of the college of american pathologists. Arch Pathol Lab Med 122:1053–1055

    CAS  PubMed  Google Scholar 

  32. King TA, Pilewskie M, Muhsen S et al (2015) Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol 33:3945–3952

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K (2015) Atypical hyperplasia of the breast–risk assessment and management options. N Engl J Med 372:78–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90:697–703

    Article  PubMed  Google Scholar 

  35. Buerger H, Otterbach F, Simon R et al (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187:396–402

    Article  CAS  PubMed  Google Scholar 

  36. Buerger H, Otterbach F, Simon R et al (1999) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189:521–526

    Article  CAS  PubMed  Google Scholar 

  37. Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L (2008) European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition–summary document. Ann Oncol 19:614–622

    Article  CAS  PubMed  Google Scholar 

  38. Wilson AR, Marotti L, Bianchi S et al (2013) The requirements of a specialist breast Centre. Eur J Cancer 49:3579–3587

    Article  CAS  PubMed  Google Scholar 

  39. Bianchi S, Caini S, Cattani MG, Vezzosi V, Biancalani M, Palli D (2009) Diagnostic concordance in reporting breast needle core biopsies using the b classification-a panel in Italy. Pathol Oncol Res 15:725–732

    Article  PubMed  Google Scholar 

  40. Elmore JG, Longton GM, Carney PA et al (2015) Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313:1122–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heywang-Kobrunner SH, Nahrig J, Hacker A, Sedlacek S, Hofler H (2010) B3 lesions: radiological assessment and multi-disciplinary aspects. Breast Care (Basel) 5:209–217

    Article  Google Scholar 

  42. Purushothaman HN, Lekanidi K, Shousha S, Wilson R (2016) Lesions of uncertain malignant potential in the breast (b3): what do we know? Clin Radiol 71:134–140

    Article  CAS  PubMed  Google Scholar 

  43. Page DL, Rogers LW (1992) Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol 23:1095–1097

    Article  CAS  PubMed  Google Scholar 

  44. Tavassoli FA, Norris HJ (1990) A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65:518–529

    Article  CAS  PubMed  Google Scholar 

  45. Page DL (1991) Atypical hyperplasia, narrowly and broadly defined. Hum Pathol 22:631–632

    Article  CAS  PubMed  Google Scholar 

  46. Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD, Simpson JF (2003) Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet 361:125–129

    Article  PubMed  Google Scholar 

  47. Tavassoli FA (1998) Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol 11:140–154

    CAS  PubMed  Google Scholar 

  48. Tavassoli FA (2005) Breast pathology: rationale for adopting the ductal intraepithelial neoplasia (din) classification. Nat Clin Pract Oncol 2:116–117

    Article  PubMed  Google Scholar 

  49. Tavassoli FA, Sakorafas GH (2009) ‘Ductal carcinoma in situ of the breast’—is it time to replace this term by ‘ductal intraepithelial neoplasia of the breast’? Oncol Res Treat 32:218–218

    Article  Google Scholar 

  50. Galimberti V, Monti S, Mastropasqua MG (2013) Dcis and lcis are confusing and outdated terms. They should be abandoned in favor of ductal intraepithelial neoplasia (din) and lobular intraepithelial neoplasia (lin). Breast 22:431–435

    Article  PubMed  Google Scholar 

  51. Pravettoni G, Yoder WR, Riva S, Mazzocco K, Arnaboldi P, Galimberti V (2016) Eliminating “ductal carcinoma in situ” and “lobular carcinoma in situ” (dcis and lcis) terminology in clinical breast practice: the cognitive psychology point of view. Breast 25:82–85

    Article  PubMed  Google Scholar 

  52. Foote FW, Stewart FW (1945) Comparative studies of cancerous versus noncancerous breasts. Ann Surg 121:197–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simpson PT, Gale T, Reis-Filho JS et al (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746

    Article  PubMed  Google Scholar 

  54. Pinder SE, Reis-Filho JS (2006) Non-operative breast pathology: columnar cell lesions. J Clin Pathol 60:1307–1312

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dabbs DJ, Carter G, Fudge M, Peng Y, Swalsky P, Finkelstein S (2006) Molecular alterations in columnar cell lesions of the breast. Mod Pathol 19:344–349

    Article  CAS  PubMed  Google Scholar 

  56. Moinfar F, Man Y-G, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer 88:2072–2081

    Article  CAS  PubMed  Google Scholar 

  57. Schnitt SJ, Vincent-Salomon A (2003) Columnar cell lesions of the breast. Adv Anat Pathol 10:113–124

    Article  PubMed  Google Scholar 

  58. Fraser JL, Raza S, Chorny K, Connolly JL, Schnitt SJ (1998) Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications. Am J Surg Pathol 22:1521–1527

    Article  CAS  PubMed  Google Scholar 

  59. Said SM, Visscher DW, Nassar A et al (2015) Flat epithelial atypia and risk of breast cancer: a mayo cohort study. Cancer 121:1548–1555

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carley AM, Chivukula M, Carter GJ, Karabakhtsian RG, Dabbs DJ (2008) Frequency and clinical significance of simultaneous association of lobular neoplasia and columnar cell alterations in breast tissue specimens. Am J Clin Pathol 130:254–258

    Article  CAS  PubMed  Google Scholar 

  61. Brandt SM, Young GQ, Hoda SA (2008) The “Rosen triad”: tubular carcinoma, lobular carcinoma in situ, and columnar cell lesions. Adv Anat Pathol 15:140–146

    Article  PubMed  Google Scholar 

  62. Björner S, Fitzpatrick PA, Li Y et al (2014) Epithelial and stromal microrna signatures of columnar cell hyperplasia linking let-7c to precancerous and cancerous breast cancer cell proliferation. PLoS One 9:e105099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Schnitt SJ (2003) The diagnosis and management of pre-invasive breast disease: flat epithelial atypia–classification, pathologic features and clinical significance. Breast Cancer Res 5:263–268

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martel M, Barron-Rodriguez P, Tolgay Ocal I, Dotto J, Tavassoli FA (2007) Flat din 1 (flat epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1751 core biopsies performed over an 8-year period (1992–1999). Virchows Arch 451:883–891

    Article  PubMed  Google Scholar 

  65. Boulos FI, Dupont WD, Simpson JF et al (2008) Histologic associations and long-term cancer risk in columnar cell lesions of the breast. Cancer 113:2415–2421

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kunju LP, Kleer CG (2007) Significance of flat epithelial atypia on mammotome core needle biopsy: should it be excised? Hum Pathol 38:35–41

    Article  PubMed  Google Scholar 

  67. Senetta R, Campanino PP, Mariscotti G et al (2009) Columnar cell lesions associated with breast calcifications on vacuum-assisted core biopsies: clinical, radiographic, and histological correlations. Mod Pathol 22:762–769

    PubMed  Google Scholar 

  68. Rageth CJ, O’Flynn EA, Comstock C et al (2016) First international consensus conference on lesions of uncertain malignant potential in the breast (b3 lesions). Breast Cancer Res Treat 159:203–213

    Article  PubMed  PubMed Central  Google Scholar 

  69. Foote FW, Stewart FW (1982) Lobular carcinoma in situ: a rare form of mammary cancer. CA Cancer J Clin 32:234–237

    Article  Google Scholar 

  70. Page DL, Vander Zwaag R, Rogers LW, Williams LT, Walker WE, Hartmann WH (1978) Relation between component parts of fibrocystic disease complex and breast cancer. J Natl Cancer Inst 61:1055–1063

    CAS  PubMed  Google Scholar 

  71. Haagensen CD, Lane N, Lattes R, Bodian C (1978) Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer 42:737–769

    Article  CAS  PubMed  Google Scholar 

  72. Hwang ES, DeVries S, Chew KL et al (2004) Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin Cancer Res 10:5160–5167

    Article  CAS  PubMed  Google Scholar 

  73. Morandi L, Marucci G, Foschini MP et al (2006) Genetic similarities and differences between lobular in situ neoplasia (ln) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23

    Article  PubMed  Google Scholar 

  74. Aulmann S, Penzel R, Longerich T, Funke B, Schirmacher P, Sinn HP (2007) Clonality of lobular carcinoma in situ (lcis) and metachronous invasive breast cancer. Breast Cancer Res Treat 107:331–335

    Article  PubMed  Google Scholar 

  75. Andrade VP, Ostrovnaya I, Seshan VE et al (2012) Clonal relatedness between lobular carcinoma in situ and synchronous malignant lesions. Breast Cancer Res 14:R103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakr RA, Schizas M, Carniello JV et al (2016) Targeted capture massively parallel sequencing analysis of lcis and invasive lobular cancer: repertoire of somatic genetic alterations and clonal relationships. Mol Oncol 10:360–370

    Article  CAS  PubMed  Google Scholar 

  77. Page DL, Kidd TE Jr, Dupont WD, Simpson JF, Rogers LW (1991) Lobular neoplasia of the breast: higher risk for subsequent invasive cancer predicted by more extensive disease. Hum Pathol 22:1232–1239

    Article  CAS  PubMed  Google Scholar 

  78. Rosen PP, Lieberman PH, Braun DW, Kosloff C, Adair F (1978) Lobular carcinoma in situ of the breast detailed analysis of 99 patients with average follow-up of 24 years. Am J Surg Pathol 2:225–252

    Article  CAS  PubMed  Google Scholar 

  79. Wheeler JE, Enterline HT, Roseman JM et al (1974) Lobular carcinoma in situ of the breast (long-term follow up). Cancer 34:554–563

    Article  CAS  PubMed  Google Scholar 

  80. Hussain M, Cunnick GH (2011) Management of lobular carcinoma in-situ and atypical lobular hyperplasia of the breast—a review. Eur J Surg Oncol 37:279–289

    Article  CAS  PubMed  Google Scholar 

  81. Subhawong AP, Subhawong TK, Khouri N, Tsangaris T, Nassar H (2010) Incidental minimal atypical lobular hyperplasia on core needle biopsy: correlation with findings on follow-up excision. Am J Surg Pathol 34:822–828

    Article  PubMed  Google Scholar 

  82. Portschy PR, Marmor S, Nzara R, Virnig BA, Tuttle TM (2013) Trends in incidence and management of lobular carcinoma in situ: a population-based analysis. Ann Surg Oncol 20:3240–3246

    Article  PubMed  Google Scholar 

  83. Urban JA (1967) Bilaterality of cancer of the breast. Biopsy of the opposite breast. Cancer 20:1867–1870

    Article  CAS  PubMed  Google Scholar 

  84. Rosen PP, Senie R, Schottenfeld D, Ashikari R (1979) Noninvasive breast carcinoma: frequency of unsuspected invasion and implications for treatment. Ann Surg 189:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. King TA, Reis-Filho JS (2014) Lobular neoplasia. Surg Oncol Clin N Am 23:487–503

    Article  PubMed  Google Scholar 

  86. Reis-Filho JS, Pinder SE (2006) Non-operative breast pathology: lobular neoplasia. J Clin Pathol 60:1321–1327

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sneige N, Wang J, Baker BA, Krishnamurthy S, Middleton LP (2002) Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol 15:1044–1050

    Article  PubMed  Google Scholar 

  88. Eusebi V, Magalhaes F, Azzopardi JG (1992) Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol 23:655–662

    Article  CAS  PubMed  Google Scholar 

  89. King TA, Reis-Filho JS (2013) Pleomorphic lobular carcinoma in situ. Breast Cancer Manag 2:375–384

    Article  CAS  Google Scholar 

  90. Chen YY, Hwang ES, Roy R et al (2009) Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol 33:1683–1694

    Article  PubMed  PubMed Central  Google Scholar 

  91. Morrogh M, Andrade VP, Giri D et al (2012) Cadherin-catenin complex dissociation in lobular neoplasia of the breast. Breast Cancer Res Treat 132:641–652

    Article  CAS  PubMed  Google Scholar 

  92. Dabbs DJ, Schnitt SJ, Geyer FC et al (2013) Lobular neoplasia of the breast revisited with emphasis on the role of e-cadherin immunohistochemistry. Am J Surg Pathol 37:e1–11

    Article  PubMed  Google Scholar 

  93. Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR (2001) Multiple ways of silencing e-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 92:404–408

    Article  CAS  PubMed  Google Scholar 

  94. Sarrió D, Moreno-Bueno G, Hardisson D et al (2003) Epigenetic and genetic alterations of apc and cdh1 genes in lobular breast cancer: relationships with abnormal e-cadherin and catenin expression and microsatellite instability. Int J Cancer 106:208–215

    Article  PubMed  CAS  Google Scholar 

  95. Derksen PWB, Liu X, Saridin F et al (2006) Somatic inactivation of e-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    Article  CAS  PubMed  Google Scholar 

  96. Vos CB, Cleton-Jansen AM, Berx G et al (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58:4721–4727

    CAS  PubMed  Google Scholar 

  98. Mastracci TL, Shadeo A, Colby SM et al (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45:1007–1017

    Article  CAS  PubMed  Google Scholar 

  99. Hwang ES, Nyante SJ, Yi Chen Y et al (2004) Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 100:2562–2572

    Article  PubMed  Google Scholar 

  100. Begg CB, Ostrovnaya I, Carniello JV et al (2016) Clonal relationships between lobular carcinoma in situ and other breast malignancies. Breast Cancer Res 18:66

    Article  PubMed  PubMed Central  Google Scholar 

  101. Andrade VP, Morrogh M, Qin LX et al (2015) Gene expression profiling of lobular carcinoma in situ reveals candidate precursor genes for invasion. Mol Oncol 9:772–782

    Article  CAS  PubMed  Google Scholar 

  102. Boldt V, Stacher E, Halbwedl I et al (2010) Positioning of necrotic lobular intraepithelial neoplasias (lin, grade 3) within the sequence of breast carcinoma progression. Genes Chromosomes Cancer 49(5):463–470

    CAS  PubMed  Google Scholar 

  103. Reis-Filho JS, Simpson PT, Jones C et al (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207:1–13

    Article  CAS  PubMed  Google Scholar 

  104. Simpson PT, Reis-Filho JS, Lambros MBK et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    Article  CAS  PubMed  Google Scholar 

  105. Chuba PJ, Hamre MR, Yap J et al (2005) Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol 23:5534–5541

    Article  PubMed  Google Scholar 

  106. Andersen JA (1977) Lobular carcinoma in situ of the breast. An approach to rational treatment. Cancer 39:2597–2602

    Article  CAS  PubMed  Google Scholar 

  107. Bodian CA, Perzin KH, Lattes R (1996) Lobular neoplasia. Long term risk of breast cancer and relation to other factors. Cancer 78:1024–1034

    Article  CAS  PubMed  Google Scholar 

  108. Shah-Khan MG, Geiger XJ, Reynolds C, Jakub JW, Deperi ER, Glazebrook KN (2012) Long-term follow-up of lobular neoplasia (atypical lobular hyperplasia/lobular carcinoma in situ) diagnosed on core needle biopsy. Ann Surg Oncol 19:3131–3138

    Article  PubMed  Google Scholar 

  109. Murray MP, Luedtke C, Liberman L, Nehhozina T, Akram M, Brogi E (2013) Classic lobular carcinoma in situ and atypical lobular hyperplasia at percutaneous breast core biopsy: outcomes of prospective excision. Cancer 119:1073–1079

    Article  PubMed  Google Scholar 

  110. Brennan MF (2013) Lessons learned from the study of soft tissue sarcoma. Int J Surg 11(Suppl 1):S8–10

    Article  PubMed  Google Scholar 

  111. Fisher ER, Costantino J, Fisher B et al (1996) Pathologic findings from the national surgical adjuvant breast project (nsabp) protocol b-17. Five-year observations concerning lobular carcinoma in situ. Cancer 78:1403–1416

    Article  CAS  PubMed  Google Scholar 

  112. Fisher ER, Land SR, Fisher B, Mamounas E, Gilarski L, Wolmark N (2004) Pathologic findings from the national surgical adjuvant breast and bowel project: twelve-year observations concerning lobular carcinoma in situ. Cancer 100:238–244

    Article  PubMed  Google Scholar 

  113. Stomper PC, Cholewinski SP, Penetrante RB, Harlos JP, Tsangaris TN (1993) Atypical hyperplasia: frequency and mammographic and pathologic relationships in excisional biopsies guided with mammography and clinical examination. Radiology 189:667–671

    Article  CAS  PubMed  Google Scholar 

  114. Pinder SE, Ellis IO (2003) The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (dcis) and atypical ductal hyperplasia (adh)–current definitions and classification. Breast Cancer Res 5:254–257

    Article  PubMed  PubMed Central  Google Scholar 

  115. Joslyn SA (2006) Ductal carcinoma in situ: trends in geographic, temporal, and demographic patterns of care and survival. Breast J 12:20–27

    Article  PubMed  Google Scholar 

  116. Kerlikowske K (2010) Epidemiology of ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  117. Virnig BA, Tuttle TM, Shamliyan T, Kane RL (2010) Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst 102:170–178

    Article  PubMed  Google Scholar 

  118. Society AC (2015) Breast cancer facts & figures 2015–2016. Special section: breast carcinoma in situ. American Cancer Society, Inc, Atlanta

    Google Scholar 

  119. Reeves GK, Pirie K, Green J, Bull D, Beral V (2012) Comparison of the effects of genetic and environmental risk factors on in situ and invasive ductal breast cancer. Int J Cancer 131:930–937

    Article  CAS  PubMed  Google Scholar 

  120. Claus EB, Stowe M, Carter D (2001) Breast carcinoma in situ: risk factors and screening patterns. J Natl Cancer Inst 93:1811–1817

    Article  CAS  PubMed  Google Scholar 

  121. Kerlikowske K, Barclay J, Grady D, Sickles EA, Ernster V (1997) Comparison of risk factors for ductal carcinoma in situ and invasive breast cancer. J Natl Cancer Inst 89:76–82

    Article  CAS  PubMed  Google Scholar 

  122. Bane A (2013) Ductal carcinoma in situ: what the pathologist needs to know and why. Int J Breast Cancer 2013:914053

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bodian CA, Perzin KH, Lattes R, Hoffmann P (1993) Reproducibility and validity of pathologic classifications of benign breast disease and implications for clinical applications. Cancer 71:3908–3913

    Article  CAS  PubMed  Google Scholar 

  124. Palli D, Galli M, Bianchi S et al (1996) Reproducibility of histological diagnosis of breast lesions: results of a panel in Italy. Eur J Cancer 32A:603–607

    Article  CAS  PubMed  Google Scholar 

  125. Palazzo JP, Hyslop T (1998) Hyperplastic ductal and lobular lesions and carcinomas in situ of the breast: reproducibility of current diagnostic criteria among community- and academic-based pathologists. Breast J 4:230–237

    Article  CAS  PubMed  Google Scholar 

  126. Schnitt SJ, Connolly JL, Tavassoli FA et al (1992) InterobserverSSSS reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16:1133–1143

    Article  CAS  PubMed  Google Scholar 

  127. Rosai J (1991) Borderline epithelial lesions of the breast. Am J Surg Pathol 15:209–221

    Article  CAS  PubMed  Google Scholar 

  128. Anonymous (1997) Consensus conference on the classification of ductal carcinoma in situ. Hum Pathol 28:1221–1225

    Article  Google Scholar 

  129. Shamliyan T, Wang SY, Virnig BA, Tuttle TM, Kane RL (2010) Association between patient and tumor characteristics with clinical outcomes in women with ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010:121–129

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang SY, Shamliyan T, Virnig BA, Kane R (2011) Tumor characteristics as predictors of local recurrence after treatment of ductal carcinoma in situ: a meta-analysis. Breast Cancer Res Treat 127:1–14

    Article  CAS  PubMed  Google Scholar 

  131. Badve S, A’Hern RP, Ward AM et al (1998) Prediction of local recurrence of ductal carcinoma in situ of the breast using five histological classifications: a comparative study with long follow-up. Hum Pathol 29:915–923

    Article  CAS  PubMed  Google Scholar 

  132. Lester SC, Bose S, Chen YY et al (2009) Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med 133:15–25

    PubMed  Google Scholar 

  133. (CAP) CoAP (2013) Protocol for the examination of specimens from patients with ductal carcinoma in situ (dcis) of the breast. Arch Pathol Lab Med 133(1):15–25

    Google Scholar 

  134. Ross DS, Wen YH, Brogi E (2013) Ductal carcinoma in situ: morphology-based knowledge and molecular advances. Adv Anat Pathol 20:205–216

    Article  PubMed  Google Scholar 

  135. Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ (2006) Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8:R61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Tamimi RM, Baer HJ, Marotti J et al (2008) Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res 10:R67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Livasy CA, Perou CM, Karaca G et al (2007) Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol 38:197–204

    Article  CAS  PubMed  Google Scholar 

  138. Muggerud AA, Hallett M, Johnsen H et al (2010) Molecular diversity in ductal carcinoma in situ (dcis) and early invasive breast cancer. Mol Oncol 4:357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Allred DC, Wu Y, Mao S et al (2008) Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 14:370–378

    Article  CAS  PubMed  Google Scholar 

  140. Vincent-Salomon A, Lucchesi C, Gruel N et al (2008) Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 14:1956–1965

    Article  CAS  PubMed  Google Scholar 

  141. Marshall LM, Hunter DJ, Connolly JL et al (1997) Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. Cancer Epidemiol Biomark Prev 6:297–301

    CAS  Google Scholar 

  142. Collins LC, Aroner SA, Connolly JL, Colditz GA, Schnitt SJ, Tamimi RM (2016) Breast cancer risk by extent and type of atypical hyperplasia: an update from the nurses’ health studies. Cancer 122:515–520

    Article  PubMed  Google Scholar 

  143. Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103:2481–2484

    Article  PubMed  Google Scholar 

  144. Allred DC (2010) Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr 2010:134–138

    Article  PubMed  PubMed Central  Google Scholar 

  145. Erbas B, Provenzano E, Armes J, Gertig D (2006) The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat 97:135–144

    Article  PubMed  Google Scholar 

  146. Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ (2005) Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the nurses’ health study. Cancer 103:1778–1784

    Article  PubMed  Google Scholar 

  147. Eusebi V, Feudale E, Foschini MP et al (1994) Long-term follow-up of in situ carcinoma of the breast. Semin Diagn Pathol 11:223–235

    CAS  PubMed  Google Scholar 

  148. Menes TS, Kerlikowske K, Lange J, Jaffer S, Rosenberg R, Miglioretti DL (2016) Subsequent breast cancer risk following diagnosis of atypical ductal hyperplasia on needle biopsy. JAMA Oncol 3(1):36–41

    Article  Google Scholar 

  149. McGhan LJ, Pockaj BA, Wasif N, Giurescu ME, McCullough AE, Gray RJ (2012) Atypical ductal hyperplasia on core biopsy: an automatic trigger for excisional biopsy? Ann Surg Oncol 19:3264–3269

    Article  PubMed  Google Scholar 

  150. Margenthaler JA, Duke D, Monsees BS, Barton PT, Clark C, Dietz JR (2006) Correlation between core biopsy and excisional biopsy in breast high-risk lesions. Am J Surg 192:534–537

    Article  PubMed  Google Scholar 

  151. Menen RS, Ganesan N, Bevers T et al (2016) Long-term safety of observation in selected women following core biopsy diagnosis of atypical ductal hyperplasia. Ann Surg Oncol 24(1):70–76

    Article  PubMed  Google Scholar 

  152. Bijker N, Donker M, Wesseling J, den Heeten GJ, Rutgers EJ (2013) Is dcis breast cancer, and how do i treat it? Curr Treat Options in Oncol 14:75–87

    Article  CAS  Google Scholar 

  153. Silverstein MJ, Lagios MD (2015) Treatment selection for patients with ductal carcinoma in situ (dcis) of the breast using the university of southern California/van nuys (usc/vnpi) prognostic index. Breast J 21:127–132

    Article  PubMed  Google Scholar 

  154. Rudloff U, Jacks LM, Goldberg JI et al (2010) Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol 28:3762–3769

    Article  PubMed  Google Scholar 

  155. Solin LJ, Gray R, Baehner FL et al (2013) A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hughes LL, Wang M, Page DL et al (2009) Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the eastern cooperative oncology group. J Clin Oncol 27:5319–5324

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rakovitch E, Nofech-Mozes S, Hanna W et al (2015) A population-based validation study of the dcis score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat 152:389–398

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mardekian SK, Bombonati A, Palazzo JP (2016) Ductal carcinoma in situ of the breast: the importance of morphologic and molecular interactions. Hum Pathol 49:114–123

    Article  CAS  PubMed  Google Scholar 

  159. Pang JM, Gorringe KL, Fox SB (2016) Ductal carcinoma in situ—update on risk assessment and management. Histopathology 68:96–109

    Article  PubMed  Google Scholar 

  160. Zhou W, Jirstrom K, Amini RM et al (2013) Molecular subtypes in ductal carcinoma in situ of the breast and their relation to prognosis: a population-based cohort study. BMC Cancer 13:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rakovitch E, Nofech-Mozes S, Hanna W et al (2012) Her2/neu and ki-67 expression predict non-invasive recurrence following breast-conserving therapy for ductal carcinoma in situ. Br J Cancer 106:1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kerlikowske K, Molinaro AM, Gauthier ML et al (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst 102:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Curigliano G, Disalvatore D, Esposito A et al (2015) Risk of subsequent in situ and invasive breast cancer in human epidermal growth factor receptor 2-positive ductal carcinoma in situ. Ann Oncol 26:682–687

    Article  CAS  PubMed  Google Scholar 

  164. Cowell CF, Weigelt B, Sakr RA et al (2013) Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 7:859–869

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gao Y, Niu Y, Wang X, Wei L, Lu S (2008) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87:145–152

    Article  PubMed  CAS  Google Scholar 

  166. Liao S, Desouki MM, Gaile DP et al (2012) Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer 51:1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yao J, Weremowicz S, Feng B et al (2006) Combined cdna array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66:4065–4078

    Article  CAS  PubMed  Google Scholar 

  168. Johnson CE, Gorringe KL, Thompson ER et al (2012) Identification of copy number alterations associated with the progression of dcis to invasive ductal carcinoma. Breast Cancer Res Treat 133:889–898

    Article  CAS  PubMed  Google Scholar 

  169. Lee S, Stewart S, Nagtegaal I et al (2012) Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 72:4574–4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 100:5974–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hernandez L, Wilkerson PM, Lambros MB et al (2012) Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol 227:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A et al (2012) Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of myc during progression. Am J Pathol 181:1807–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lyons TR, O’Brien J, Borges VF et al (2011) Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and cox-2. Nat Med 17:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Barker HE, Chang J, Cox TR et al (2011) Loxl2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 71:1561–1572

    Article  CAS  PubMed  Google Scholar 

  176. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  CAS  PubMed  Google Scholar 

  178. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Vargas AC, McCart Reed AE, Waddell N et al (2012) Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat 135:153–165

    Article  CAS  PubMed  Google Scholar 

  180. Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10:249–260

    Article  PubMed  Google Scholar 

  181. Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247

    Article  PubMed  Google Scholar 

  182. Barsky SH, Karlin NJ (2006) Mechanisms of disease: breast tumor pathogenesis and the role of the myoepithelial cell. Nat Clin Pract Oncol 3:138–151

    Article  CAS  PubMed  Google Scholar 

  183. Qiu W, Hu M, Sridhar A et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of brca2, cdh13, msh6, pax5, pax6 and wt1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225:222–231

    Article  CAS  PubMed  Google Scholar 

  185. Park SY, Kwon HJ, Lee HE et al (2011) Promoter cpg island hypermethylation during breast cancer progression. Virchows Arch 458:73–84

    Article  CAS  PubMed  Google Scholar 

  186. Verschuur-Maes AH, de Bruin PC, van Diest PJ (2012) Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer. Breast Cancer Res Treat 136:705–715

    Article  PubMed  Google Scholar 

  187. Loi S, Sirtaine N, Piette F et al (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase iii randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: big 02-98. J Clin Oncol 31:860–867

    Article  CAS  PubMed  Google Scholar 

  188. Loi S, Michiels S, Salgado R et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the finher trial. Ann Oncol 25:1544–1550

    Article  CAS  PubMed  Google Scholar 

  189. Salgado R, Denkert C, Campbell C et al (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in her2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the neoaltto trial. JAMA Oncol 1:448–454

    Article  PubMed  PubMed Central  Google Scholar 

  190. Thompson E, Taube JM, Elwood H et al (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Morita M, Yamaguchi R, Tanaka M et al (2016) Cd8(+) tumor-infiltrating lymphocytes contribute to spontaneous “healing” in her2-positive ductal carcinoma in situ. Cancer Med 5:1607–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim A, Heo SH, Kim YA, Gong G, Jin LH (2016) An examination of the local cellular immune response to examples of both ductal carcinoma in situ (dcis) of the breast and dcis with microinvasion, with emphasis on tertiary lymphoid structures and tumor infiltrating lymphocytes. Am J Clin Pathol 146:137–144

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Guerini-Rocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerini-Rocco, E., Fusco, N. (2017). Premalignant and Pre-invasive Lesions of the Breast. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics